These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26877007)

  • 1. Preparation and characterization of resistant starch type IV nanoparticles through ultrasonication and miniemulsion cross-linking.
    Ding Y; Zheng J; Xia X; Ren T; Kan J
    Carbohydr Polym; 2016 May; 141():151-9. PubMed ID: 26877007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of retrograded starch nanoparticles through homogenization and miniemulsion cross-linking.
    Ding Y; Zheng J; Zhang F; Kan J
    Carbohydr Polym; 2016 Oct; 151():656-665. PubMed ID: 27474611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and stability of resistant starch nanoparticles, using acid hydrolysis and cross-linking of waxy rice starch.
    Jeong O; Shin M
    Food Chem; 2018 Aug; 256():77-84. PubMed ID: 29606475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization and characterization of high pressure homogenization produced chemically modified starch nanoparticles.
    Ding Y; Kan J
    J Food Sci Technol; 2017 Dec; 54(13):4501-4509. PubMed ID: 29184257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of starch nanoparticles through ultrasonic-assisted oxidation methods.
    Sun Q; Fan H; Xiong L
    Carbohydr Polym; 2014 Jun; 106():359-64. PubMed ID: 24721090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication.
    Kim HY; Park DJ; Kim JY; Lim ST
    Carbohydr Polym; 2013 Oct; 98(1):295-301. PubMed ID: 23987348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating the in vitro digestibility of chemically modified starch ingredient by a non-thermal processing technology of ultrasonic treatment.
    Ding Y; Xiao Y; Ouyang Q; Luo F; Lin Q
    Ultrason Sonochem; 2021 Jan; 70():105350. PubMed ID: 33010579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Starch nanoparticles formation via high power ultrasonication.
    Bel Haaj S; Magnin A; Pétrier C; Boufi S
    Carbohydr Polym; 2013 Feb; 92(2):1625-32. PubMed ID: 23399199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physico-chemical, functional and structural properties of RS3/RS4 from kidney bean (Phaseolus vulgaris) cultivars.
    Gani A; Jan A; Shah A; Masoodi FA; Ahmad M; Ashwar BA; Akhter R; Wani IA
    Int J Biol Macromol; 2016 Jun; 87():514-21. PubMed ID: 26976068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An attempt to cast light into starch nanocrystals preparation and cross-linking.
    Jivan MJ; Madadlou A; Yarmand M
    Food Chem; 2013 Dec; 141(3):1661-6. PubMed ID: 23870875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and optimization of gelatin nanoparticles using the miniemulsion process.
    Ethirajan A; Schoeller K; Musyanovych A; Ziener U; Landfester K
    Biomacromolecules; 2008 Sep; 9(9):2383-9. PubMed ID: 18666795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties.
    Wang X; Chen H; Luo Z; Fu X
    Carbohydr Polym; 2016 Mar; 138():192-200. PubMed ID: 26794752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical and morphological properties of resistant starch type 4 prepared under ultrasound and conventional conditions and their in-vitro and in-vivo digestibilities.
    Falsafi SR; Maghsoudlou Y; Aalami M; Jafari SM; Raeisi M
    Ultrason Sonochem; 2019 May; 53():110-119. PubMed ID: 30691996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and emulsification properties of dialdehyde starch nanoparticles.
    Chen Y; Hao Y; Ting K; Li Q; Gao Q
    Food Chem; 2019 Jul; 286():467-474. PubMed ID: 30827634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch.
    Kim HY; Han JA; Kweon DK; Park JD; Lim ST
    Carbohydr Polym; 2013 Apr; 93(2):582-8. PubMed ID: 23499099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure properties of Canna edulis RS3 (double enzyme hydrolysis) and RS4 (OS-starch and cross-linked starch): Influence on fermentation products and human gut microbiota.
    Wang N; Zhang C; Li H; Wu J; Zhang D; Li Y; Yang L; Zhang N; Wang X
    Int J Biol Macromol; 2024 Apr; 265(Pt 1):130700. PubMed ID: 38458281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of starch nanoparticles in a water-in-ionic liquid microemulsion system and their drug loading and releasing properties.
    Zhou G; Luo Z; Fu X
    J Agric Food Chem; 2014 Aug; 62(32):8214-20. PubMed ID: 25069988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing nanoemulsion templates for fabrication of dextrin nanoparticles via emulsion cross-linking technique.
    Manchun S; Dass CR; Sriamornsak P
    Carbohydr Polym; 2014 Jan; 101():650-5. PubMed ID: 24299822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological, physicochemical, and viscoelastic properties of sonicated corn starch.
    Mohammad Amini A; Razavi SM; Mortazavi SA
    Carbohydr Polym; 2015 May; 122():282-92. PubMed ID: 25817670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of tapioca starch nanoparticles by nanoprecipitation-sonication treatment.
    Hedayati S; Niakousari M; Mohsenpour Z
    Int J Biol Macromol; 2020 Jan; 143():136-142. PubMed ID: 31805331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.