BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 26877017)

  • 1. Controlled growth of Cu2O nanoparticles bound to cotton fibres.
    Errokh A; Ferraria AM; Conceição DS; Vieira Ferreira LF; Botelho do Rego AM; Rei Vilar M; Boufi S
    Carbohydr Polym; 2016 May; 141():229-37. PubMed ID: 26877017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrafibrillar Dispersion of Cuprous Oxide (Cu
    Hillyer MB; Nam S; Condon BD
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cotton decorated with Cu
    Errokh A; Cheikhrouhou W; Ferraria AM; Botelho do Rego AM; Boufi S
    Colloids Surf B Biointerfaces; 2021 Apr; 200():111600. PubMed ID: 33582443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics modified with polycarboxylic acids.
    Marković D; Deeks C; Nunney T; Radovanović Ž; Radoičić M; Šaponjić Z; Radetić M
    Carbohydr Polym; 2018 Nov; 200():173-182. PubMed ID: 30177155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of silver-coated cotton fabrics using silver carbamate via thermal reduction and their properties.
    Kwak WG; Oh MH; Gong MS
    Carbohydr Polym; 2015 Jan; 115():317-24. PubMed ID: 25439900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of nano Cu2O on cotton: morphological, physical, biological and optical sensing characterizations.
    Sedighi A; Montazer M; Samadi N
    Carbohydr Polym; 2014 Sep; 110():489-98. PubMed ID: 24906783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial fabrication of cotton fabric and leather using green-synthesized nanosilver.
    Velmurugan P; Cho M; Lee SM; Park JH; Bae S; Oh BT
    Carbohydr Polym; 2014 Jun; 106():319-25. PubMed ID: 24721085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ synthesis of bacterial cellulose/copper nanoparticles composite membranes with long-term antibacterial property.
    He W; Huang X; Zheng Y; Sun Y; Xie Y; Wang Y; Yue L
    J Biomater Sci Polym Ed; 2018 Dec; 29(17):2137-2153. PubMed ID: 30280964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction.
    Jia B; Mei Y; Cheng L; Zhou J; Zhang L
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):2897-902. PubMed ID: 22680307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Cu@SiO2/bacterial cellulose nanofibers: Preparation and excellent performance in antibacterial activity.
    Ma B; Huang Y; Zhu C; Chen C; Chen X; Fan M; Sun D
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():656-61. PubMed ID: 26952469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract.
    Muthulakshmi L; Rajini N; Nellaiah H; Kathiresan T; Jawaid M; Rajulu AV
    Int J Biol Macromol; 2017 Feb; 95():1064-1071. PubMed ID: 27984140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green chemistry synthesis of nano-cuprous oxide.
    Ceja-Romero LR; Ortega-Arroyo L; Ortega Rueda de León JM; López-Andrade X; Narayanan J; Aguilar-Méndez MA; Castaño VM
    IET Nanobiotechnol; 2016 Apr; 10(2):39-44. PubMed ID: 27074852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile approach for large-scale production of metal and metal oxide nanoparticles and preparation of antibacterial cotton pads.
    Shankar S; Rhim JW
    Carbohydr Polym; 2017 May; 163():137-145. PubMed ID: 28267490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic studies and antibacterial activities of pure and various levels of Cu-doped BaSO₄ nanoparticles.
    Sivakumar S; Soundhirarajan P; Venkatesan A; Khatiwada CP
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Dec; 151():895-907. PubMed ID: 26184475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The green adsorption of chitosan tripolyphosphate nanoparticles on cotton fiber surfaces.
    Wang M; She Y; Xiao Z; Hu J; Zhou R; Zhang J
    Carbohydr Polym; 2014 Jan; 101():812-8. PubMed ID: 24299843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibacterial cotton fibers treated with silver nanoparticles and quaternary ammonium salts.
    Kang CK; Kim SS; Kim S; Lee J; Lee JH; Roh C; Lee J
    Carbohydr Polym; 2016 Oct; 151():1012-1018. PubMed ID: 27474649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous oxide nanoparticles.
    Yang Z; Hao X; Chen S; Ma Z; Wang W; Wang C; Yue L; Sun H; Shao Q; Murugadoss V; Guo Z
    J Colloid Interface Sci; 2019 Jan; 533():13-23. PubMed ID: 30144689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity.
    Ramesh M; Anbuvannan M; Viruthagiri G
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():864-70. PubMed ID: 25459609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating.
    M El Saeed A; Abd El-Fattah M; Azzam AM; Dardir MM; Bader MM
    Int J Biol Macromol; 2016 Aug; 89():190-7. PubMed ID: 27103492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan-coated cotton cloth supported copper nanoparticles for toxic dye reduction.
    Ali N; Awais ; Kamal T; Ul-Islam M; Khan A; Shah SJ; Zada A
    Int J Biol Macromol; 2018 May; 111():832-838. PubMed ID: 29355628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.