These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26878027)

  • 21. Facile fabrication of Si nanowire arrays for solar cell application.
    Li X; Tay BK
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10539-43. PubMed ID: 22408943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimized efficiency in InP nanowire solar cells with accurate 1D analysis.
    Chen Y; Kivisaari P; Pistol ME; Anttu N
    Nanotechnology; 2018 Jan; 29(4):045401. PubMed ID: 29189204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Efficiency Solar Cells from Extremely Low Minority Carrier Lifetime Substrates Using Radial Junction Nanowire Architecture.
    Raj V; Vora K; Fu L; Tan HH; Jagadish C
    ACS Nano; 2019 Oct; 13(10):12015-12023. PubMed ID: 31539225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light absorption and emission in nanowire array solar cells.
    Kupec J; Stoop RL; Witzigmann B
    Opt Express; 2010 Dec; 18(26):27589-605. PubMed ID: 21197033
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition.
    Wang HW; Ting CF; Hung MK; Chiou CH; Liu YL; Liu Z; Ratinac KR; Ringer SP
    Nanotechnology; 2009 Feb; 20(5):055601. PubMed ID: 19417348
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Current Approach in Surface Plasmons for Thin Film and Wire Array Solar Cell Applications.
    Zhou K; Guo Z; Liu S; Lee JH
    Materials (Basel); 2015 Jul; 8(7):4565-4581. PubMed ID: 28793457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantifying losses and thermodynamic limits in nanophotonic solar cells.
    Mann SA; Oener SZ; Cavalli A; Haverkort JE; Bakkers EP; Garnett EC
    Nat Nanotechnol; 2016 Dec; 11(12):1071-1075. PubMed ID: 27618257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications.
    Fang H; Li X; Song S; Xu Y; Zhu J
    Nanotechnology; 2008 Jun; 19(25):255703. PubMed ID: 21828663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CuInSe2 nanowires from facile chemical transformation of In2Se3 and their integration in single-nanowire devices.
    Schoen DT; Peng H; Cui Y
    ACS Nano; 2013 Apr; 7(4):3205-11. PubMed ID: 23413963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced absorption in silicon nanocone arrays for photovoltaics.
    Wang B; Leu PW
    Nanotechnology; 2012 May; 23(19):194003. PubMed ID: 22538835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1 eV.
    Tran TT; Sun H; Ng KW; Ren F; Li K; Lu F; Yablonovitch E; Chang-Hasnain CJ
    Nano Lett; 2014 Jun; 14(6):3235-40. PubMed ID: 24841253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of the short-circuit current in an InP nanowire array solar cell through opto-electronic modeling.
    Chen Y; Kivisaari P; Pistol ME; Anttu N
    Nanotechnology; 2016 Oct; 27(43):435404. PubMed ID: 27659909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Absorption and transmission of light in III-V nanowire arrays for tandem solar cell applications.
    Anttu N; Dagytė V; Zeng X; Otnes G; Borgström M
    Nanotechnology; 2017 May; 28(20):205203. PubMed ID: 28436381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silicon Nanowires for Solar Thermal Energy Harvesting: an Experimental Evaluation on the Trade-off Effects of the Spectral Optical Properties.
    Sekone AK; Chen YB; Lu MC; Chen WK; Liu CA; Lee MT
    Nanoscale Res Lett; 2016 Dec; 11(1):1. PubMed ID: 26729219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coaxial silicon nanowires as solar cells and nanoelectronic power sources.
    Tian B; Zheng X; Kempa TJ; Fang Y; Yu N; Yu G; Huang J; Lieber CM
    Nature; 2007 Oct; 449(7164):885-9. PubMed ID: 17943126
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of nanowire optical cavities as efficient photon absorbers.
    Kim SK; Song KD; Kempa TJ; Day RW; Lieber CM; Park HG
    ACS Nano; 2014 Apr; 8(4):3707-14. PubMed ID: 24617563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. All inorganic semiconductor nanowire mesh for direct solar water splitting.
    Liu B; Wu CH; Miao J; Yang P
    ACS Nano; 2014 Nov; 8(11):11739-44. PubMed ID: 25365141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth optimization and characterization of regular arrays of GaAs/AlGaAs core/shell nanowires for tandem solar cells on silicon.
    Vettori M; Piazza V; Cattoni A; Scaccabarozzi A; Patriarche G; Regreny P; Chauvin N; Botella C; Grenet G; Penuelas J; Fave A; Tchernycheva M; Gendry M
    Nanotechnology; 2019 Feb; 30(8):084005. PubMed ID: 30524074
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On Field-Effect Photovoltaics: Gate Enhancement of the Power Conversion Efficiency in a Nanotube/Silicon-Nanowire Solar Cell.
    Petterson MK; Lemaitre MG; Shen Y; Wadhwa P; Hou J; Vasilyeva SV; Kravchenko II; Rinzler AG
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21182-7. PubMed ID: 26352052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of GaAs Nanowire Pin Junction Array Solar Cells by Using AlGaAs/GaAs Heterojunctions.
    Wu Y; Yan X; Wei W; Zhang J; Zhang X; Ren X
    Nanoscale Res Lett; 2018 Apr; 13(1):126. PubMed ID: 29696454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.