These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26878029)

  • 1. Measurement of Resting Energy Metabolism in Mice Using Oxymax Open Circuit Indirect Calorimeter.
    Nie Y; Gavin TP; Kuang S
    Bio Protoc; 2015; 5(18):. PubMed ID: 26878029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods to validate the accuracy of an indirect calorimeter in the in-vitro setting.
    Oshima T; Ragusa M; Graf S; Dupertuis YM; Heidegger CP; Pichard C
    Clin Nutr ESPEN; 2017 Dec; 22():71-75. PubMed ID: 29415838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A water-sealed indirect calorimeter for measurement of oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure in infants.
    Dechert RE; Wesley JR; Schafer LE; LaMond S; Nicks J; Coran AG; Bartlett RH
    JPEN J Parenter Enteral Nutr; 1988; 12(3):256-9. PubMed ID: 3134559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparison of Carbon Dioxide Elimination Measurements Between a Portable Indirect Calorimeter and Volumetric Capnography Monitor: An In Vitro Simulation.
    Smallwood CD; Martinez EE; Mehta NM
    Respir Care; 2016 Mar; 61(3):354-8. PubMed ID: 26715770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the accuracy and precision of a new generation indirect calorimeter in canopy dilution mode.
    Delsoglio M; Dupertuis YM; Oshima T; van der Plas M; Pichard C
    Clin Nutr; 2020 Jun; 39(6):1927-1934. PubMed ID: 31543335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of oxygen consumption, carbon dioxide production, and resting energy expenditure in premature and full-term infants.
    Dechert R; Wesley J; Schafer L; LaMond S; Beck T; Coran A; Bartlett RH
    J Pediatr Surg; 1985 Dec; 20(6):792-8. PubMed ID: 3936913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pocket-sized metabolic analyzer for assessment of resting energy expenditure.
    Zhao D; Xian X; Terrera M; Krishnan R; Miller D; Bridgeman D; Tao K; Zhang L; Tsow F; Forzani ES; Tao N
    Clin Nutr; 2014 Apr; 33(2):341-7. PubMed ID: 23827182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of an indirect calorimeter using n-of-1 methodology.
    Frankenfield DC; Ashcraft CM; Wood C; Chinchilli VM
    Clin Nutr; 2016 Feb; 35(1):163-168. PubMed ID: 25707909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen consumption after cardiopulmonary bypass--implications of different measuring methods.
    Oudemans-van Straaten HM; Scheffer GJ; Eysman L; Wildevuur CR
    Intensive Care Med; 1993; 19(2):105-10. PubMed ID: 8486864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of Energy Expenditure by Indirect Calorimetry with a Whole-Room Calorimeter.
    Zhou G; Bao K; Xiao H; Ge Y; Kong X; Liu T
    Phenomics; 2024 Apr; 4(2):203-212. PubMed ID: 38884055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A whole body transportable indirect calorimeter for human use in the tropics.
    Charbonnier A; Jones CD; Schutz Y; Murgatroyd PR; Whitehead RG; Jéquier E; Spinnler G
    Eur J Clin Nutr; 1990 Oct; 44(10):725-31. PubMed ID: 2269251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of an equation for energy expenditure that does not require the respiratory quotient.
    Kaiyala KJ; Wisse BE; Lighton JRB
    PLoS One; 2019; 14(2):e0211585. PubMed ID: 30707737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of indirect calorimetry for measurement of energy expenditure in healthy volunteers undergoing pressure controlled non-invasive ventilation support.
    Siirala W; Noponen T; Olkkola KT; Vuori A; Koivisto M; Hurme S; Aantaa R
    J Clin Monit Comput; 2012 Feb; 26(1):37-43. PubMed ID: 22207315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An evaluation of a handheld indirect calorimeter against a standard calorimeter in obese and nonobese adults.
    Frankenfield DC; Coleman A
    JPEN J Parenter Enteral Nutr; 2013 Sep; 37(5):652-8. PubMed ID: 23334358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The performance of a variable-flow indirect calorimeter.
    Nicholson MJ; Holton J; Bradley AP; Beatty PC; Campbell IT
    Physiol Meas; 1996 Feb; 17(1):43-55. PubMed ID: 8746376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring energy expenditure in community-dwelling older adults: are portable methods valid and acceptable?
    Fares S; Miller MD; Masters S; Crotty M
    J Am Diet Assoc; 2008 Mar; 108(3):544-8. PubMed ID: 18313438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy expenditure and gas exchange measurements in postoperative patients: thermodilution versus indirect calorimetry.
    Brandi LS; Grana M; Mazzanti T; Giunta F; Natali A; Ferrannini E
    Crit Care Med; 1992 Sep; 20(9):1273-83. PubMed ID: 1521442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous breathing circuit flow and tracheal tube cuff leak: sources of error during pediatric indirect calorimetry.
    Räsänen J
    Crit Care Med; 1992 Sep; 20(9):1335-40. PubMed ID: 1521450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indirect calorimetry: technical aspects.
    Matarese LE
    J Am Diet Assoc; 1997 Oct; 97(10 Suppl 2):S154-60. PubMed ID: 9336580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of accuracy and reliability of indirect calorimetry for the measurement of resting energy expenditure in healthy dogs.
    O'Toole E; McDonell WN; Wilson BA; Mathews KA; Miller CW; Sears WC
    Am J Vet Res; 2001 Nov; 62(11):1761-7. PubMed ID: 11703021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.