These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 26878153)
1. Co-Cu Nanoparticles: Synthesis by Galvanic Replacement and Phase Rearrangement during Catalytic Activation. Nafria R; Genç A; Ibáñez M; Arbiol J; de la Piscina PR; Homs N; Cabot A Langmuir; 2016 Mar; 32(9):2267-76. PubMed ID: 26878153 [TBL] [Abstract][Full Text] [Related]
2. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Senanayake SD; Stacchiola D; Rodriguez JA Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528 [TBL] [Abstract][Full Text] [Related]
3. Fine CuO anisotropic nanoparticles supported on mesoporous SBA-15 for selective hydrogenation of nitroaromatics. Sareen S; Mutreja V; Singh S; Pal B J Colloid Interface Sci; 2016 Jan; 461():203-210. PubMed ID: 26397928 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of silica supported AuCu nanoparticle catalysts and the effects of pretreatment conditions for the CO oxidation reaction. Bauer JC; Mullins D; Li M; Wu Z; Payzant EA; Overbury SH; Dai S Phys Chem Chem Phys; 2011 Feb; 13(7):2571-81. PubMed ID: 21246124 [TBL] [Abstract][Full Text] [Related]
5. Core-shell Co@Co3O4 nanoparticle-embedded bamboo-like nitrogen-doped carbon nanotubes (BNCNTs) as a highly active electrocatalyst for the oxygen reduction reaction. Xiao J; Chen C; Xi J; Xu Y; Xiao F; Wang S; Yang S Nanoscale; 2015 Apr; 7(16):7056-64. PubMed ID: 25465620 [TBL] [Abstract][Full Text] [Related]
6. Composition-dependent morphostructural properties of Ni-Cu oxide nanoparticles confined within the channels of ordered mesoporous SBA-15 silica. Ungureanu A; Dragoi B; Chirieac A; Ciotonea C; Royer S; Duprez D; Mamede AS; Dumitriu E ACS Appl Mater Interfaces; 2013 Apr; 5(8):3010-25. PubMed ID: 23496429 [TBL] [Abstract][Full Text] [Related]
7. Strategy to Design-Synthesize Bimetallic Nanostructures Using the Alcohol Reduction Method. Ishijima M; Cuya Huaman JL; Wakizaka H; Suzuki K; Miyamura H; Balachandran J Inorg Chem; 2021 Sep; 60(18):14436-14445. PubMed ID: 34455795 [TBL] [Abstract][Full Text] [Related]
8. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems. Stacchiola DJ Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058 [TBL] [Abstract][Full Text] [Related]
9. Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. da Silva AGM; Rodrigues TS; Haigh SJ; Camargo PHC Chem Commun (Camb); 2017 Jun; 53(53):7135-7148. PubMed ID: 28537291 [TBL] [Abstract][Full Text] [Related]
10. Microwave-hydrothermal synthesis and characterization of nanostructured copper substituted ZnM2O4 (M = Al, Ga) spinels as precursors for thermally stable Cu catalysts. Conrad F; Massue C; Kühl S; Kunkes E; Girgsdies F; Kasatkin I; Zhang B; Friedrich M; Luo Y; Armbrüster M; Patzke GR; Behrens M Nanoscale; 2012 Mar; 4(6):2018-28. PubMed ID: 22327266 [TBL] [Abstract][Full Text] [Related]
11. Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles. Lee WR; Kim MG; Choi JR; Park JI; Ko SJ; Oh SJ; Cheon J J Am Chem Soc; 2005 Nov; 127(46):16090-7. PubMed ID: 16287295 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of Mesoporous γ-Alumina-Supported Co-Based Catalysts and Their Catalytic Performance for Chemoselective Reduction of Nitroarenes. Huang H; Tan M; Wang X; Zhang M; Guo S; Zou X; Lu X ACS Appl Mater Interfaces; 2018 Feb; 10(6):5413-5428. PubMed ID: 29368913 [TBL] [Abstract][Full Text] [Related]
13. Scalable synthesis of multicomponent multifunctional inorganic core@mesoporous silica shell nanocomposites. Zeng M; Shu Y; Parra-Robert M; Desai D; Zhou H; Li Q; Rong Z; Karaman DŞ; Yang H; Peng J; Fernandez-Varo G; Jiménez W; Casals G; Puntes V; Rosenholm JM; Casals E Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112272. PubMed ID: 34474831 [TBL] [Abstract][Full Text] [Related]
14. Facile and Mild Strategy to Construct Mesoporous CeO2-CuO Nanorods with Enhanced Catalytic Activity toward CO Oxidation. Chen G; Xu Q; Yang Y; Li C; Huang T; Sun G; Zhang S; Ma D; Li X ACS Appl Mater Interfaces; 2015 Oct; 7(42):23538-44. PubMed ID: 26455260 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of nanoporous Cu-Pt(Pd) core/shell structure by galvanic replacement and its application in electrocatalysis. Xu C; Liu Y; Wang J; Geng H; Qiu H ACS Appl Mater Interfaces; 2011 Dec; 3(12):4626-32. PubMed ID: 22034948 [TBL] [Abstract][Full Text] [Related]
16. One-pot synthesis of silica-coated copper nanoparticles with high chemical and thermal stability. Shiomi S; Kawamori M; Yagi S; Matsubara E J Colloid Interface Sci; 2015 Dec; 460():47-54. PubMed ID: 26313712 [TBL] [Abstract][Full Text] [Related]
17. Evidence of highly active cobalt oxide catalyst for the Fischer-Tropsch synthesis and CO2 hydrogenation. Melaet G; Ralston WT; Li CS; Alayoglu S; An K; Musselwhite N; Kalkan B; Somorjai GA J Am Chem Soc; 2014 Feb; 136(6):2260-3. PubMed ID: 24460136 [TBL] [Abstract][Full Text] [Related]
18. Tailoring the synthesis of supported Pd catalysts towards desired structure and size of metal particles. Suresh G; Radnik J; Kalevaru VN; Pohl MM; Schneider M; Lücke B; Martin A; Madaan N; Brückner A Phys Chem Chem Phys; 2010 May; 12(18):4833-42. PubMed ID: 20428566 [TBL] [Abstract][Full Text] [Related]
19. Contribution of HRTEM to the characterization of silica-incorporated copper-oxide catalysts prepared by the sol-gel technique. Benaïssa M; Diaz G Microsc Res Tech; 1998 Jan; 40(1):49-55. PubMed ID: 9443157 [TBL] [Abstract][Full Text] [Related]
20. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst. Cao X; Fu Q; Luo Y Phys Chem Chem Phys; 2014 May; 16(18):8367-75. PubMed ID: 24658397 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]