These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 26878235)

  • 1. Controlling spin relaxation with a cavity.
    Bienfait A; Pla JJ; Kubo Y; Zhou X; Stern M; Lo CC; Weis CD; Schenkel T; Vion D; Esteve D; Morton JJ; Bertet P
    Nature; 2016 Mar; 531(7592):74-7. PubMed ID: 26878235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting spins by their fluorescence with a microwave photon counter.
    Albertinale E; Balembois L; Billaud E; Ranjan V; Flanigan D; Schenkel T; Estève D; Vion D; Bertet P; Flurin E
    Nature; 2021 Dec; 600(7889):434-438. PubMed ID: 34912088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems.
    Imamoğlu A
    Phys Rev Lett; 2009 Feb; 102(8):083602. PubMed ID: 19257738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A coherent spin-photon interface in silicon.
    Mi X; Benito M; Putz S; Zajac DM; Taylor JM; Burkard G; Petta JR
    Nature; 2018 Mar; 555(7698):599-603. PubMed ID: 29443961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic control of Purcell enhanced emission of erbium ions in nanoparticles.
    Casabone B; Deshmukh C; Liu S; Serrano D; Ferrier A; Hümmer T; Goldner P; Hunger D; de Riedmatten H
    Nat Commun; 2021 Jun; 12(1):3570. PubMed ID: 34117226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsed electron spin resonance spectroscopy in the Purcell regime.
    Ranjan V; Probst S; Albanese B; Doll A; Jacquot O; Flurin E; Heeres R; Vion D; Esteve D; Morton JJL; Bertet P
    J Magn Reson; 2020 Jan; 310():106662. PubMed ID: 31837553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonant microwave-mediated interactions between distant electron spins.
    Borjans F; Croot XG; Mi X; Gullans MJ; Petta JR
    Nature; 2020 Jan; 577(7789):195-198. PubMed ID: 31875849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherent coupling between Vanadyl Phthalocyanine spin ensemble and microwave photons: towards integration of molecular spin qubits into quantum circuits.
    Bonizzoni C; Ghirri A; Atzori M; Sorace L; Sessoli R; Affronte M
    Sci Rep; 2017 Oct; 7(1):13096. PubMed ID: 29026118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent spin-photon coupling using a resonant exchange qubit.
    Landig AJ; Koski JV; Scarlino P; Mendes UC; Blais A; Reichl C; Wegscheider W; Wallraff A; Ensslin K; Ihn T
    Nature; 2018 Aug; 560(7717):179-184. PubMed ID: 30046114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum oscillations in a molecular magnet.
    Bertaina S; Gambarelli S; Mitra T; Tsukerblat B; Müller A; Barbara B
    Nature; 2008 May; 453(7192):203-6. PubMed ID: 18464738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QUANTUM INFORMATION. Coherent coupling of a single spin to microwave cavity photons.
    Viennot JJ; Dartiailh MC; Cottet A; Kontos T
    Science; 2015 Jul; 349(6246):408-11. PubMed ID: 26206930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond.
    Zhang JL; Sun S; Burek MJ; Dory C; Tzeng YK; Fischer KA; Kelaita Y; Lagoudakis KG; Radulaski M; Shen ZX; Melosh NA; Chu S; Lončar M; Vučković J
    Nano Lett; 2018 Feb; 18(2):1360-1365. PubMed ID: 29377701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong spin-photon coupling in silicon.
    Samkharadze N; Zheng G; Kalhor N; Brousse D; Sammak A; Mendes UC; Blais A; Scappucci G; Vandersypen LMK
    Science; 2018 Mar; 359(6380):1123-1127. PubMed ID: 29371427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin-resolved Purcell effect in a quantum dot microcavity system.
    Ren Q; Lu J; Tan HH; Wu S; Sun L; Zhou W; Xie W; Sun Z; Zhu Y; Jagadish C; Shen SC; Chen Z
    Nano Lett; 2012 Jul; 12(7):3455-9. PubMed ID: 22698083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system.
    Fink JM; Göppl M; Baur M; Bianchetti R; Leek PJ; Blais A; Wallraff A
    Nature; 2008 Jul; 454(7202):315-8. PubMed ID: 18633413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesoscopic systems: classical irreversibility and quantum coherence.
    Barbara B
    Philos Trans A Math Phys Eng Sci; 2012 Sep; 370(1975):4487-516. PubMed ID: 22908339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.