These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 26878269)

  • 1. Progesterone binding nano-carriers based on hydrophobically modified hyperbranched polyglycerols.
    Alizadeh Noghani M; Brooks DE
    Nanoscale; 2016 Mar; 8(9):5189-99. PubMed ID: 26878269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and in vitro characterization of paclitaxel and docetaxel loaded into hydrophobically derivatized hyperbranched polyglycerols.
    Mugabe C; Liggins RT; Guan D; Manisali I; Chafeeva I; Brooks DE; Heller M; Jackson JK; Burt HM
    Int J Pharm; 2011 Feb; 404(1-2):238-49. PubMed ID: 21093563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of carboxylic acid conjugated, hydrophobically derivatized, hyperbranched polyglycerols as nanoparticulate drug carriers for cisplatin.
    Ye L; Letchford K; Heller M; Liggins R; Guan D; Kizhakkedathu JN; Brooks DE; Jackson JK; Burt HM
    Biomacromolecules; 2011 Jan; 12(1):145-55. PubMed ID: 21128674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amphiphilic polylactic acid-hyperbranched polyglycerol nanoparticles as a controlled release system for poorly water-soluble drugs: physicochemical characterization.
    Gao X; Zhang X; Zhang X; Wang Y; Sun L; Li C
    J Pharm Pharmacol; 2011 Jun; 63(6):757-64. PubMed ID: 21585372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unimolecular micelles based on hydrophobically derivatized hyperbranched polyglycerols: ligand binding properties.
    Kainthan RK; Mugabe C; Burt HM; Brooks DE
    Biomacromolecules; 2008 Mar; 9(3):886-95. PubMed ID: 18247528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue uptake of docetaxel loaded hydrophobically derivatized hyperbranched polyglycerols and their effects on the morphology of the bladder urothelium.
    Mugabe C; Raven PA; Fazli L; Baker JH; Jackson JK; Liggins RT; So AI; Gleave ME; Minchinton AI; Brooks DE; Burt HM
    Biomaterials; 2012 Jan; 33(2):692-703. PubMed ID: 22014457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrotropic polymeric mixed micelles based on functional hyperbranched polyglycerol copolymers as hepatoma-targeting drug delivery system.
    Zhang X; Zhang X; Yu P; Han Y; Li Y; Li C
    J Pharm Sci; 2013 Jan; 102(1):145-53. PubMed ID: 23132353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hydrotropic β-cyclodextrin grafted hyperbranched polyglycerol co-polymer for hydrophobic drug delivery.
    Zhang X; Zhang X; Wu Z; Gao X; Cheng C; Wang Z; Li C
    Acta Biomater; 2011 Feb; 7(2):585-92. PubMed ID: 20813209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of hydrophobically derivatized hyperbranched polyglycerol with PEGylated shell as a nanocarrier for systemic delivery of chemotherapeutics.
    Misri R; Wong NK; Shenoi RA; Lum CM; Chafeeva I; Toth K; Rustum Y; Kizhakkedathu JN; Khan MK
    Nanomedicine; 2015 Oct; 11(7):1785-95. PubMed ID: 25981338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatible hyperbranched polyglycerol modified β-cyclodextrin derivatives for docetaxel delivery.
    Xu Z; Zhang Y; Hu Q; Tang Q; Xu J; Wu J; Kirk TB; Ma D; Xue W
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():965-972. PubMed ID: 27987795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled release of DNA from photoresponsive hyperbranched polyglycerols with oligoamine shells.
    Fischer W; Quadir MA; Barnard A; Smith DK; Haag R
    Macromol Biosci; 2011 Dec; 11(12):1736-46. PubMed ID: 22028095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design Considerations for Developing Hyperbranched Polyglycerol Nanoparticles as Systemic Drug Carriers.
    Wong NK; Misri R; Shenoi RA; Chafeeva I; Kizhakkedathu JN; Khan MK
    J Biomed Nanotechnol; 2016 May; 12(5):1089-100. PubMed ID: 27305828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modification of fluorescent Tb
    Deng F; Zhou H; Chen J; Huang H; Tian J; Huang Q; Wen Y; Liu M; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109976. PubMed ID: 31499989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and self-assembly of amphiphilic hyperbranched polyglycerols modified with palmitoyl chloride.
    Cheng H; Wang S; Yang J; Zhou Y; Yan D
    J Colloid Interface Sci; 2009 Sep; 337(1):278-84. PubMed ID: 19540510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High molecular weight polyglycerol-based multivalent mannose conjugates.
    Kizhakkedathu JN; Creagh AL; Shenoi RA; Rossi NA; Brooks DE; Chan T; Lam J; Dandepally SR; Haynes CA
    Biomacromolecules; 2010 Oct; 11(10):2567-75. PubMed ID: 20804173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growing hyperbranched polyglycerols on magnetic nanoparticles to resist nonspecific adsorption of proteins.
    Wang S; Zhou Y; Yang S; Ding B
    Colloids Surf B Biointerfaces; 2008 Nov; 67(1):122-6. PubMed ID: 18805680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of amphiphilic hyperbranched polyglycerol derivatives onto human red blood cells.
    Liu Z; Janzen J; Brooks DE
    Biomaterials; 2010 Apr; 31(12):3364-73. PubMed ID: 20122720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The size-dependent efficacy and biocompatibility of hyperbranched polyglycerol in peritoneal dialysis.
    Du C; Mendelson AA; Guan Q; Chapanian R; Chafeeva I; da Roza G; Kizhakkedathu JN
    Biomaterials; 2014 Feb; 35(5):1378-89. PubMed ID: 24246641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled monothiol-terminated hyperbranched polyglycerols on a gold surface: a comparative study on the structure, morphology, and protein adsorption characteristics with linear poly(ethylene glycol)s.
    J Yeh PY; Kainthan RK; Zou Y; Chiao M; Kizhakkedathu JN
    Langmuir; 2008 May; 24(9):4907-16. PubMed ID: 18361531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant free preparation of biodegradable dendritic polyglycerol nanogels by inverse nanoprecipitation for encapsulation and release of pharmaceutical biomacromolecules.
    Steinhilber D; Witting M; Zhang X; Staegemann M; Paulus F; Friess W; Küchler S; Haag R
    J Control Release; 2013 Aug; 169(3):289-95. PubMed ID: 23262202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.