These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 26878342)
1. The role of sand, marble chips and Typha latifolia in domestic wastewater treatment - a column study on constructed wetlands. Kadaverugu R; Shingare RP; Raghunathan K; Juwarkar AA; Thawale PR; Singh SK Environ Technol; 2016 Oct; 37(19):2508-15. PubMed ID: 26878342 [TBL] [Abstract][Full Text] [Related]
2. High Pb concentration stress on Typha latifolia growth and Pb removal in microcosm wetlands. Han J; Chen F; Zhou Y; Wang C Water Sci Technol; 2015; 71(11):1734-41. PubMed ID: 26038940 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic understanding of the pollutant removal and transformation processes in the constructed wetland system. Malyan SK; Yadav S; Sonkar V; Goyal VC; Singh O; Singh R Water Environ Res; 2021 Oct; 93(10):1882-1909. PubMed ID: 34129692 [TBL] [Abstract][Full Text] [Related]
4. Molybdenum(VI) removal by using constructed wetlands with different filter media and plants. Lian JJ; Xu SG; Zhang YM; Han CW Water Sci Technol; 2013; 67(8):1859-66. PubMed ID: 23579843 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of Ageratum conyzoides in field scale constructed wetlands (CWs) for domestic wastewater treatment. Tilak AS; Wani SP; Datta A; Patil MD; Kaushal M; Reddy KR Water Sci Technol; 2017 May; 75(10):2268-2280. PubMed ID: 28541934 [TBL] [Abstract][Full Text] [Related]
6. Performance comparison of constructed wetlands with gravel- and rice husk-based media for phenol and nitrogen removal. Tee HC; Seng CE; Noor AM; Lim PE Sci Total Environ; 2009 May; 407(11):3563-71. PubMed ID: 19272632 [TBL] [Abstract][Full Text] [Related]
7. Comparative study on removal of enteric pathogens from domestic wastewater using Typha latifolia and Cyperus rotundus along with different substrates. Shingare RP; Nanekar SV; Thawale PR; Karthik R; Juwarkar AA Int J Phytoremediation; 2017 Oct; 19(10):899-908. PubMed ID: 28318301 [TBL] [Abstract][Full Text] [Related]
8. Municipal wastewater treatment potential and metal accumulation strategies of Colocasia esculenta (L.) Schott and Typha latifolia L. in a constructed wetland. Rana V; Maiti SK Environ Monit Assess; 2018 May; 190(6):328. PubMed ID: 29730705 [TBL] [Abstract][Full Text] [Related]
9. Removal processes of disinfection byproducts in subsurface-flow constructed wetlands treating secondary effluent. Chen Y; Wen Y; Tang Z; Li L; Cai Y; Zhou Q Water Res; 2014 Mar; 51():163-71. PubMed ID: 24440896 [TBL] [Abstract][Full Text] [Related]
10. Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Calheiros CS; Rangel AO; Castro PM Bioresour Technol; 2009 Jul; 100(13):3205-13. PubMed ID: 19289277 [TBL] [Abstract][Full Text] [Related]
11. Modeling organic matter and nitrogen removal from domestic wastewater in a pilot-scale vertical subsurface flow constructed wetland. Bustillo-Lecompte CF; Mehrvar M; Quiñones-Bolaños E; Castro-Faccetti CF J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(5):414-24. PubMed ID: 26818608 [TBL] [Abstract][Full Text] [Related]
12. Effects of cattail biomass on sulfate removal and carbon sources competition in subsurface-flow constructed wetlands treating secondary effluent. Chen Y; Wen Y; Zhou J; Tang Z; Li L; Zhou Q; Vymazal J Water Res; 2014 Aug; 59():1-10. PubMed ID: 24768761 [TBL] [Abstract][Full Text] [Related]
13. Livestock Wastewater Treatment in Constructed Wetlands for Agriculture Reuse. Dias S; Mucha AP; Duarte Crespo R; Rodrigues P; Almeida CMR Int J Environ Res Public Health; 2020 Nov; 17(22):. PubMed ID: 33228045 [TBL] [Abstract][Full Text] [Related]
14. Effects of plant biomass on nitrogen transformation in subsurface-batch constructed wetlands: a stable isotope and mass balance assessment. Chen Y; Wen Y; Zhou Q; Vymazal J Water Res; 2014 Oct; 63():158-67. PubMed ID: 25000198 [TBL] [Abstract][Full Text] [Related]
15. Phytoremediation of an integrated poultry and aquaculture wastewater using sub-surface constructed wetland planted with Akadiri SA; Dada PO; Badejo AA; Adeosun OJ; Ogunrinde AT; Faloye OT Int J Phytoremediation; 2024 May; 26(7):1133-1143. PubMed ID: 38140944 [TBL] [Abstract][Full Text] [Related]
16. Removal of 1,2-Dichloroethane from real industrial wastewater using a sub-surface batch system with Typha angustifolia L. Al-Baldawi IA Ecotoxicol Environ Saf; 2018 Jan; 147():260-265. PubMed ID: 28850808 [TBL] [Abstract][Full Text] [Related]
17. Pathogen removal from domestic and swine wastewater by experimental constructed wetlands. Giácoman-Vallejos G; Ponce-Caballero C; Champagne P Water Sci Technol; 2015; 71(8):1263-70. PubMed ID: 25909739 [TBL] [Abstract][Full Text] [Related]
18. Comparative study on pilots between ANAMMOX favored conditions in a partially saturated vertical flow constructed wetland and a hybrid system for rural wastewater treatment. Kraiem K; Kallali H; Wahab MA; Fra-Vazquez A; Mosquera-Corral A; Jedidi N Sci Total Environ; 2019 Jun; 670():644-653. PubMed ID: 30909042 [TBL] [Abstract][Full Text] [Related]
19. Effect of monocultures and polycultures of Hernández-Castelán DA; Zurita F; Marín-Peña O; Betanzo-Torres EA; Sandoval-Herazo M; Castellanos-Rivera J; Sandoval Herazo LC Int J Phytoremediation; 2024 Nov; 26(13):2163-2174. PubMed ID: 38992938 [TBL] [Abstract][Full Text] [Related]
20. Removal of nutrients from aquaculture wastewater using cattail (Typha spp.) constructed wetlands. Blandford NC; McCorquodale-Bauer K; Grosshans R; Hardy B; Cicek N; Palace V J Environ Qual; 2024; 53(5):767-775. PubMed ID: 39126244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]