BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 26878345)

  • 1. Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles.
    Dixit M; Kosa M; Lavi OS; Markovsky B; Aurbach D; Major DT
    Phys Chem Chem Phys; 2016 Mar; 18(9):6799-812. PubMed ID: 26878345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na-doped Ni-rich LiNi0.5Co0.2Mn0.3O2 cathode material with both high rate capability and high tap density for lithium ion batteries.
    Hua W; Zhang J; Zheng Z; Liu W; Peng X; Guo XD; Zhong B; Wang YJ; Wang X
    Dalton Trans; 2014 Oct; 43(39):14824-32. PubMed ID: 25162932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Performance and Structural Stability of K and Cl Co-Doped LiNi
    Chen Z; Gong X; Zhu H; Cao K; Liu Q; Liu J; Li L; Duan J
    Front Chem; 2018; 6():643. PubMed ID: 30671428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Role of Minor Molybdenum Doping in LiNi
    Breuer O; Chakraborty A; Liu J; Kravchuk T; Burstein L; Grinblat J; Kauffman Y; Gladkih A; Nayak P; Tsubery M; Frenkel AI; Talianker M; Major DT; Markovsky B; Aurbach D
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29608-29621. PubMed ID: 30095889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sn-Doping and Li
    Zhu H; Shen R; Tang Y; Yan X; Liu J; Song L; Fan Z; Zheng S; Chen Z
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32365929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the electrochemical properties of LiNi(0.5)Co(0.2)Mn(0.3)O2 at 4.6 V cutoff potential by surface coating with Li2TiO3 for lithium-ion batteries.
    Wang J; Yu Y; Li B; Fu T; Xie D; Cai J; Zhao J
    Phys Chem Chem Phys; 2015 Dec; 17(47):32033-43. PubMed ID: 26573985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Multitechnical Investigation into Capacity Fading of High-Voltage LiNi
    Shen CH; Wang Q; Chen HJ; Shi CG; Zhang HY; Huang L; Li JT; Sun SG
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35323-35335. PubMed ID: 27966872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-Spot Facile Synthesis of Single-Crystal LiNi
    Xiong C; Liu F; Gao J; Jiang X
    ACS Omega; 2020 Dec; 5(47):30356-30362. PubMed ID: 33283083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of valuable metals from LiNi
    Zhuang L; Sun C; Zhou T; Li H; Dai A
    Waste Manag; 2019 Feb; 85():175-185. PubMed ID: 30803570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Graphene Nanosheets with Different Lateral Sizes as Conductive Additives on the Electrochemical Performance of LiNi
    Hsu TH; Liu WR
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32438590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi
    Fan X; Tan C; Li Y; Chen Z; Li Y; Huang Y; Pan Q; Zheng F; Wang H; Li Q
    J Hazard Mater; 2021 May; 410():124610. PubMed ID: 33243647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the Electrocatalysis of LiNi
    Huang D; Yu J; Zhang Z; Engtrakul C; Burrell A; Zhou M; Luo H; Tenent RC
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10496-10502. PubMed ID: 32043855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compound-Hierarchical-Sphere LiNi
    Wang L; Li L; Zhang X; Wu F; Chen R
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32120-32127. PubMed ID: 30152996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical Degradation Mechanism and Thermal Behaviors of the Stored LiNi
    Chen Z; Liu C; Sun G; Kong X; Lai S; Li J; Zhou R; Wang J; Zhao J
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25454-25464. PubMed ID: 29963849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance.
    Fu C; Li G; Luo D; Li Q; Fan J; Li L
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15822-31. PubMed ID: 25203668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na and Cl co-doping modified LiNi
    Song L; Zheng Y; Kuang Y; Zhao T; Xia Y; Xiao M; Xiang Y; Xiao Z; Tang F
    Nanotechnology; 2023 Jun; 34(36):. PubMed ID: 37257437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on the facile regeneration of degraded cathode materials from spent LiNi
    Yang C; Hao Y; Wang J; Zhang M; Song L; Qu J
    Front Chem; 2024; 12():1400758. PubMed ID: 38746018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A feasible process for recycling valuable metals from LiNi
    Liu DY; Sun SN; Li DY
    Environ Technol; 2024 Jun; 45(16):3189-3201. PubMed ID: 37158845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Characterization of the Surface Evolution for LiNi
    Zheng H; Qu Q; Zhu G; Liu G; Battaglia VS; Zheng H
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12445-12452. PubMed ID: 28338316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic Insight in the Function of Phosphite Additives for Protection of LiNi0.5Co0.2Mn0.3O2 Cathode in High Voltage Li-Ion Cells.
    He M; Su CC; Peebles C; Feng Z; Connell JG; Liao C; Wang Y; Shkrob IA; Zhang Z
    ACS Appl Mater Interfaces; 2016 May; 8(18):11450-8. PubMed ID: 27090502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.