BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 26878899)

  • 1. Analysis of Iterative Screening with Stepwise Compound Selection Based on Novartis In-house HTS Data.
    Paricharak S; IJzerman AP; Bender A; Nigsch F
    ACS Chem Biol; 2016 May; 11(5):1255-64. PubMed ID: 26878899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using information from historical high-throughput screens to predict active compounds.
    Riniker S; Wang Y; Jenkins JL; Landrum GA
    J Chem Inf Model; 2014 Jul; 54(7):1880-91. PubMed ID: 24933016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of Novartis' Small Molecule Screening Deck Design.
    Schuffenhauer A; Schneider N; Hintermann S; Auld D; Blank J; Cotesta S; Engeloch C; Fechner N; Gaul C; Giovannoni J; Jansen J; Joslin J; Krastel P; Lounkine E; Manchester J; Monovich LG; Pelliccioli AP; Schwarze M; Shultz MD; Stiefl N; Baeschlin DK
    J Med Chem; 2020 Dec; 63(23):14425-14447. PubMed ID: 33140646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rethinking molecular similarity: comparing compounds on the basis of biological activity.
    Petrone PM; Simms B; Nigsch F; Lounkine E; Kutchukian P; Cornett A; Deng Z; Davies JW; Jenkins JL; Glick M
    ACS Chem Biol; 2012 Aug; 7(8):1399-409. PubMed ID: 22594495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data-Driven Derivation of an "Informer Compound Set" for Improved Selection of Active Compounds in High-Throughput Screening.
    Paricharak S; IJzerman AP; Jenkins JL; Bender A; Nigsch F
    J Chem Inf Model; 2016 Sep; 56(9):1622-30. PubMed ID: 27487177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plate-based diversity selection based on empirical HTS data to enhance the number of hits and their chemical diversity.
    Sukuru SC; Jenkins JL; Beckwith RE; Scheiber J; Bender A; Mikhailov D; Davies JW; Glick M
    J Biomol Screen; 2009 Jul; 14(6):690-9. PubMed ID: 19531667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel trends in high-throughput screening.
    Mayr LM; Bojanic D
    Curr Opin Pharmacol; 2009 Oct; 9(5):580-8. PubMed ID: 19775937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of novel scaffolds for Rho kinase 2 inhibitor through TRFRET-based high throughput screening assay.
    Oh KS; Mun J; Cho JE; Lee S; Yi KY; Lim CJ; Lee JS; Park WJ; Lee BH
    Comb Chem High Throughput Screen; 2013 Jan; 16(1):37-46. PubMed ID: 22934984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodiversity of small molecules--a new perspective in screening set selection.
    Petrone PM; Wassermann AM; Lounkine E; Kutchukian P; Simms B; Jenkins J; Selzer P; Glick M
    Drug Discov Today; 2013 Jul; 18(13-14):674-80. PubMed ID: 23454345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal HTS Fingerprint Definitions by Using a Desirability Function and a Genetic Algorithm.
    Cortes Cabrera A; Petrone PM
    J Chem Inf Model; 2018 Mar; 58(3):641-646. PubMed ID: 29425455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand efficiency based approach for efficient virtual screening of compound libraries.
    Ke YY; Coumar MS; Shiao HY; Wang WC; Chen CW; Song JS; Chen CH; Lin WH; Wu SH; Hsu JT; Chang CM; Hsieh HP
    Eur J Med Chem; 2014 Aug; 83():226-35. PubMed ID: 24960626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical molecular design: a tool to follow up hits from small-molecule screening.
    Lindgren AE; Larsson A; Linusson A; Elofsson M
    Methods Mol Biol; 2014; 1056():169-88. PubMed ID: 24306873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changing the HTS Paradigm: AI-Driven Iterative Screening for Hit Finding.
    Dreiman GHS; Bictash M; Fish PV; Griffin L; Svensson F
    SLAS Discov; 2021 Feb; 26(2):257-262. PubMed ID: 32808550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient search of chemical space: navigating from fragments to structurally diverse chemotypes.
    Wassermann AM; Kutchukian PS; Lounkine E; Luethi T; Hamon J; Bocker MT; Malik HA; Cowan-Jacob SW; Glick M
    J Med Chem; 2013 Nov; 56(21):8879-91. PubMed ID: 24117015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plate-based diversity subset screening generation 2: an improved paradigm for high-throughput screening of large compound files.
    Bell AS; Bradley J; Everett JR; Loesel J; McLoughlin D; Mills J; Peakman MC; Sharp RE; Williams C; Zhu H
    Mol Divers; 2016 Nov; 20(4):789-803. PubMed ID: 27631533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-throughput screen reveals new small-molecule activators and inhibitors of pantothenate kinases.
    Sharma LK; Leonardi R; Lin W; Boyd VA; Goktug A; Shelat AA; Chen T; Jackowski S; Rock CO
    J Med Chem; 2015 Feb; 58(3):1563-8. PubMed ID: 25569308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate Hit Estimation for Iterative Screening Using Venn-ABERS Predictors.
    Buendia R; Kogej T; Engkvist O; Carlsson L; Linusson H; Johansson U; Toccaceli P; Ahlberg E
    J Chem Inf Model; 2019 Mar; 59(3):1230-1237. PubMed ID: 30726080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Novel Pyruvate Dehydrogenase Kinase 1 (PDK1) Inhibitors by Kinase Activity-Based High-Throughput Screening for Anticancer Therapeutics.
    Zhang W; Hu X; Chakravarty H; Yang Z; Tam KY
    ACS Comb Sci; 2018 Nov; 20(11):660-671. PubMed ID: 30350563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BonMOLière: Small-Sized Libraries of Readily Purchasable Compounds, Optimized to Produce Genuine Hits in Biological Screens across the Protein Space.
    Mathai N; Stork C; Kirchmair J
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Fluorescence-based Lymphocyte Assay Suitable for High-throughput Screening of Small Molecules.
    Fouda A; Tahsini M; Khodayarian F; Al-Nafisah F; Rafei M
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.