BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 26878899)

  • 1. Analysis of Iterative Screening with Stepwise Compound Selection Based on Novartis In-house HTS Data.
    Paricharak S; IJzerman AP; Bender A; Nigsch F
    ACS Chem Biol; 2016 May; 11(5):1255-64. PubMed ID: 26878899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A High-Throughput HIV-1 Drug Screening Platform, Based on Lentiviral Vectors and Compatible with Biosafety Level-1.
    Ellinger B; Pohlmann D; Woens J; Jäkel FM; Reinshagen J; Stocking C; Prassolov VS; Fehse B; Riecken K
    Viruses; 2020 May; 12(5):. PubMed ID: 32466195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AI is a viable alternative to high throughput screening: a 318-target study.
    Atomwise AIMS Program
    Sci Rep; 2024 Apr; 14(1):7526. PubMed ID: 38565852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lies and Liabilities: Computational Assessment of High-Throughput Screening Hits to Identify Artifact Compounds.
    Alves VM; Yasgar A; Wellnitz J; Rai G; Rath M; Braga RC; Capuzzi SJ; Simeonov A; Muratov EN; Zakharov AV; Tropsha A
    J Med Chem; 2023 Sep; 66(18):12828-12839. PubMed ID: 37677128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High throughput screening for neurodegeneration and complex disease phenotypes.
    Varma H; Lo DC; Stockwell BR
    Comb Chem High Throughput Screen; 2008 Mar; 11(3):238-48. PubMed ID: 18336216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fused Tetrahydroquinolines Are Interfering with Your Assay.
    Bashore FM; Annor-Gyamfi J; Du Y; Katis V; Nwogbo F; Flax RG; Frye SV; Pearce KH; Fu H; Willson TM; Drewry DH; Axtman AD
    J Med Chem; 2023 Nov; 66(21):14434-14446. PubMed ID: 37874947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pooling in high-throughput drug screening.
    Kainkaryam RM; Woolf PJ
    Curr Opin Drug Discov Devel; 2009 May; 12(3):339-50. PubMed ID: 19396735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative High-Throughput Screening Using a Coincidence Reporter Biocircuit.
    Schuck BW; MacArthur R; Inglese J
    Curr Protoc Neurosci; 2017 Apr; 79():5.32.1-5.32.27. PubMed ID: 28398644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput nephelometry methodology for qualitative determination of aqueous solubility of chemical libraries.
    Brea J; Varela MJ; Daudey GA; Loza MI
    SLAS Discov; 2024 Apr; 29(3):100149. PubMed ID: 38492994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Power of Sophisticated Phenotypic Screening and Modern Mechanism-of-Action Methods.
    Wagner BK; Schreiber SL
    Cell Chem Biol; 2016 Jan; 23(1):3-9. PubMed ID: 26933731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Throughput, Label-free Screening Small Molecule Compound Libraries for Protein-Ligands using Combination of Small Molecule Microarrays and a Special Ellipsometry-based Optical Scanner.
    Landry JP; Fei Y; Zhu XD
    Int Drug Discov; 2011 Dec; ():8-13. PubMed ID: 22306883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximizing gain in high-throughput screening using conformal prediction.
    Svensson F; Afzal AM; Norinder U; Bender A
    J Cheminform; 2018 Feb; 10(1):7. PubMed ID: 29468427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time Biological Annotation of Synthetic Compounds.
    Gerry CJ; Hua BK; Wawer MJ; Knowles JP; Nelson SD; Verho O; Dandapani S; Wagner BK; Clemons PA; Booker-Milburn KI; Boskovic ZV; Schreiber SL
    J Am Chem Soc; 2016 Jul; 138(28):8920-7. PubMed ID: 27398798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automating the High-Throughput Screening of Protein-Based Optical Indicators and Actuators.
    Lee J; Campillo B; Hamidian S; Liu Z; Shorey M; St-Pierre F
    Biochemistry; 2023 Jan; 62(2):169-177. PubMed ID: 36315460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactivity profile of dissolved organic matter and its relation to molecular composition.
    Catalá TS; Speidel LG; Wenzel-Storjohann A; Dittmar T; Tasdemir D
    Nat Prod Bioprospect; 2023 Sep; 13(1):32. PubMed ID: 37721596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping.
    Škuta C; Cortés-Ciriano I; Dehaen W; Kříž P; van Westen GJP; Tetko IV; Bender A; Svozil D
    J Cheminform; 2020 May; 12(1):39. PubMed ID: 33431038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changing the HTS Paradigm: AI-Driven Iterative Screening for Hit Finding.
    Dreiman GHS; Bictash M; Fish PV; Griffin L; Svensson F
    SLAS Discov; 2021 Feb; 26(2):257-262. PubMed ID: 32808550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Successive Statistical and Structure-Based Modeling to Identify Chemically Novel Kinase Inhibitors.
    Burggraaff L; Lenselink EB; Jespers W; van Engelen J; Bongers BJ; González MG; Liu R; Hoos HH; van Vlijmen HWT; IJzerman AP; van Westen GJP
    J Chem Inf Model; 2020 Sep; 60(9):4283-4295. PubMed ID: 32343143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of Deep-Learning in Exploiting Large-Scale and Heterogeneous Compound Data in Industrial Pharmaceutical Research.
    David L; Arús-Pous J; Karlsson J; Engkvist O; Bjerrum EJ; Kogej T; Kriegl JM; Beck B; Chen H
    Front Pharmacol; 2019; 10():1303. PubMed ID: 31749705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining structural and bioactivity-based fingerprints improves prediction performance and scaffold hopping capability.
    Laufkötter O; Sturm N; Bajorath J; Chen H; Engkvist O
    J Cheminform; 2019 Aug; 11(1):54. PubMed ID: 31396716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.