BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 26878910)

  • 1. "Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca(2+) fluoroimaging".
    Kobayashi T; Haruta M; Sasagawa K; Matsumata M; Eizumi K; Kitsumoto C; Motoyama M; Maezawa Y; Ohta Y; Noda T; Tokuda T; Ishikawa Y; Ohta J
    Sci Rep; 2016 Feb; 6():21247. PubMed ID: 26878910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope.
    Szabo V; Ventalon C; De Sars V; Bradley J; Emiliani V
    Neuron; 2014 Dec; 84(6):1157-69. PubMed ID: 25433638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Mechanically Flexible, Implantable Neural Interface for Computational Imaging and Optogenetic Stimulation Over 5.4×5.4mm
    Moazeni S; Pollmann E; Boominathan V; Cardoso FA; Robinson J; Veeraraghavan A; Shepard K
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1295-1305. PubMed ID: 34951854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel implantable imaging system for enabling simultaneous multiplanar and multipoint analysis for fluorescence potentiometry in the visual cortex.
    Kobayashi T; Motoyama M; Masuda H; Ohta Y; Haruta M; Noda T; Sasagawa K; Tokuda T; Tamura H; Ishikawa Y; Shiosaka S; Ohta J
    Biosens Bioelectron; 2012; 38(1):321-30. PubMed ID: 22784497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical developments for optogenetics.
    Papagiakoumou E
    Biol Cell; 2013 Oct; 105(10):443-64. PubMed ID: 23782010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the function of neuronal populations: combining micromirror-based optogenetic photostimulation with voltage-sensitive dye imaging.
    Tsuda S; Kee MZ; Cunha C; Kim J; Yan P; Loew LM; Augustine GJ
    Neurosci Res; 2013 Jan; 75(1):76-81. PubMed ID: 23254260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-temporal control of neural activity in vivo using fluorescence microendoscopy.
    Hayashi Y; Tagawa Y; Yawata S; Nakanishi S; Funabiki K
    Eur J Neurosci; 2012 Sep; 36(6):2722-32. PubMed ID: 22780218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices.
    Wang Y; Lin X; Chen X; Chen X; Xu Z; Zhang W; Liao Q; Duan X; Wang X; Liu M; Wang F; He J; Shi P
    Biomaterials; 2017 Oct; 142():136-148. PubMed ID: 28735174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A CMOS-based on-chip neural interface device equipped with integrated LED array for optogenetics.
    Tokuda T; Miyatani T; Maezawa Y; Kobayashi T; Noda T; Sasagawa K; Ohta J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5146-9. PubMed ID: 23367087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CMOS-Based Neural Interface Device for Optogenetics.
    Tokuda T; Haruta M; Sasagawa K; Ohta J
    Adv Exp Med Biol; 2021; 1293():585-600. PubMed ID: 33398844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording.
    Lee J; Ozden I; Song YK; Nurmikko AV
    Nat Methods; 2015 Dec; 12(12):1157-62. PubMed ID: 26457862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vivo Optogenetics with Stimulus Calibration.
    Coddington LT; Dudman JT
    Methods Mol Biol; 2021; 2188():273-283. PubMed ID: 33119857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Holographic imaging and photostimulation of neural activity.
    Yang W; Yuste R
    Curr Opin Neurobiol; 2018 Jun; 50():211-221. PubMed ID: 29660600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain.
    Lu L; Gutruf P; Xia L; Bhatti DL; Wang X; Vazquez-Guardado A; Ning X; Shen X; Sang T; Ma R; Pakeltis G; Sobczak G; Zhang H; Seo DO; Xue M; Yin L; Chanda D; Sheng X; Bruchas MR; Rogers JA
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1374-E1383. PubMed ID: 29378934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-chip optical stimulation and electrical recording from cells.
    Yakushenko A; Gong Z; Maybeck V; Hofmann B; Gu E; Dawson M; Offenhäusser A; Wolfrum B
    J Biomed Opt; 2013 Nov; 18(11):111402. PubMed ID: 23788259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New red-fluorescent calcium indicators for optogenetics, photoactivation and multi-color imaging.
    Oheim M; van 't Hoff M; Feltz A; Zamaleeva A; Mallet JM; Collot M
    Biochim Biophys Acta; 2014 Oct; 1843(10):2284-306. PubMed ID: 24681159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implantable, wireless device platforms for neuroscience research.
    Gutruf P; Rogers JA
    Curr Opin Neurobiol; 2018 Jun; 50():42-49. PubMed ID: 29289027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opto- μECoG array: a hybrid neural interface with transparent μECoG electrode array and integrated LEDs for optogenetics.
    Kwon KY; Sirowatka B; Weber A; Li W
    IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):593-600. PubMed ID: 24144668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a Flexible Optogenetic Device for Multisite and Multiregional Optical Stimulation Through Flexible µ-LED Displays on the Cerebral Cortex.
    Shang X; Ling W; Chen Y; Li C; Huang X
    Small; 2023 Sep; 19(39):e2302241. PubMed ID: 37260144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development of An Implantable Optrode for Optogenetic Stimulation].
    Yue S; Yuan M; Zhang Y; Wang X; Wang S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Apr; 33(2):337-42. PubMed ID: 29708670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.