These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 26878910)

  • 41. Pipeline for 2-photon all-optical physiology in mouse: From viral titration and optical window implantation to binarization of calcium transients.
    Guimarães Backhaus R; Fu T; Backhaus H; Stroh A
    STAR Protoc; 2021 Dec; 2(4):101010. PubMed ID: 35079708
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A comprehensive concept of optogenetics.
    Dugué GP; Akemann W; Knöpfel T
    Prog Brain Res; 2012; 196():1-28. PubMed ID: 22341318
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Physiologically responsive, mechanically adaptive polymer optical fibers for optogenetics.
    Jorfi M; Voirin G; Foster EJ; Weder C
    Opt Lett; 2014 May; 39(10):2872-5. PubMed ID: 24978225
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor.
    Ghitani N; Bayguinov PO; Ma Y; Jackson MB
    J Neurophysiol; 2015 Feb; 113(4):1249-59. PubMed ID: 25411462
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optogenetic Manipulation of Selective Neural Activity in Free-Moving Drosophila Adults.
    Hsiao PY; Wu MC; Lin YY; Fu CC; Chiang AS
    Methods Mol Biol; 2016; 1408():377-87. PubMed ID: 26965137
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Parallel and patterned optogenetic manipulation of neurons in the brain slice using a DMD-based projector.
    Sakai S; Ueno K; Ishizuka T; Yawo H
    Neurosci Res; 2013 Jan; 75(1):59-64. PubMed ID: 22469653
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of a PET/Cerenkov-light hybrid imaging system.
    Yamamoto S; Hamamura F; Watabe T; Ikeda H; Kanai Y; Watabe H; Kato K; Ogata Y; Hatazawa J
    Med Phys; 2014 Sep; 41(9):092504. PubMed ID: 25186413
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A fiber-based implantable multi-optrode array with contiguous optical and electrical sites.
    Chen S; Pei W; Gui Q; Chen Y; Zhao S; Wang H; Chen H
    J Neural Eng; 2013 Aug; 10(4):046020. PubMed ID: 23883568
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CMOS-based opto-electronic neural interface devices for optogenetics.
    Tokuda T; Noguchi S; Iwasaki S; Takehara H; Noda T; Sasagawa K; Ohta J
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6319-6322. PubMed ID: 28269694
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two-photon optogenetics.
    Oron D; Papagiakoumou E; Anselmi F; Emiliani V
    Prog Brain Res; 2012; 196():119-43. PubMed ID: 22341324
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics.
    McCall JG; Qazi R; Shin G; Li S; Ikram MH; Jang KI; Liu Y; Al-Hasani R; Bruchas MR; Jeong JW; Rogers JA
    Nat Protoc; 2017 Feb; 12(2):219-237. PubMed ID: 28055036
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A simple approach for non-invasive transcranial optical vascular imaging (nTOVI).
    Kalchenko V; Israeli D; Kuznetsov Y; Meglinski I; Harmelin A
    J Biophotonics; 2015 Nov; 8(11-12):897-901. PubMed ID: 25924020
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cardiac optogenetics: a decade of enlightenment.
    Entcheva E; Kay MW
    Nat Rev Cardiol; 2021 May; 18(5):349-367. PubMed ID: 33340010
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses.
    Resendez SL; Jennings JH; Ung RL; Namboodiri VM; Zhou ZC; Otis JM; Nomura H; McHenry JA; Kosyk O; Stuber GD
    Nat Protoc; 2016 Mar; 11(3):566-97. PubMed ID: 26914316
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Wireless Optogenetic Headstage with Multichannel Electrophysiological Recording Capability.
    Gagnon-Turcotte G; Kisomi AA; Ameli R; Camaro CO; LeChasseur Y; Néron JL; Bareil PB; Fortier P; Bories C; de Koninck Y; Gosselin B
    Sensors (Basel); 2015 Sep; 15(9):22776-97. PubMed ID: 26371006
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A one-photon endoscope for simultaneous patterned optogenetic stimulation and calcium imaging in freely behaving mice.
    Zhang J; Hughes RN; Kim N; Fallon IP; Bakhurin K; Kim J; Severino FPU; Yin HH
    Nat Biomed Eng; 2023 Apr; 7(4):499-510. PubMed ID: 35970930
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of a microfluidic platform with integrated power splitting waveguides for optogenetic neural cell stimulation.
    Feng H; Shu W; Chen X; Zhang Y; Lu Y; Wang L; Chen Y
    Biomed Microdevices; 2015 Oct; 17(5):101. PubMed ID: 26371060
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional brain fluorescence plurimetry in rat by implantable concatenated CMOS imaging system.
    Kobayashi T; Masuda H; Kitsumoto C; Haruta M; Motoyama M; Ohta Y; Noda T; Sasagawa K; Tokuda T; Shiosaka S; Ohta J
    Biosens Bioelectron; 2014 Mar; 53():31-6. PubMed ID: 24121224
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Integrated Neurophotonics: Toward Dense Volumetric Interrogation of Brain Circuit Activity-at Depth and in Real Time.
    Moreaux LC; Yatsenko D; Sacher WD; Choi J; Lee C; Kubat NJ; Cotton RJ; Boyden ES; Lin MZ; Tian L; Tolias AS; Poon JKS; Shepard KL; Roukes ML
    Neuron; 2020 Oct; 108(1):66-92. PubMed ID: 33058767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.