These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 26879244)

  • 1. Interfacial Engineering for Quantum-Dot-Sensitized Solar Cells.
    Shen C; Fichou D; Wang Q
    Chem Asian J; 2016 Apr; 11(8):1183-93. PubMed ID: 26879244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge Recombination Control for High Efficiency Quantum Dot Sensitized Solar Cells.
    Zhao K; Pan Z; Zhong X
    J Phys Chem Lett; 2016 Feb; 7(3):406-17. PubMed ID: 26758605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%.
    Du J; Du Z; Hu JS; Pan Z; Shen Q; Sun J; Long D; Dong H; Sun L; Zhong X; Wan LJ
    J Am Chem Soc; 2016 Mar; 138(12):4201-9. PubMed ID: 26962680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum dot-sensitized solar cells.
    Pan Z; Rao H; Mora-Seró I; Bisquert J; Zhong X
    Chem Soc Rev; 2018 Oct; 47(20):7659-7702. PubMed ID: 30209490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells.
    Jiao S; Shen Q; Mora-Seró I; Wang J; Pan Z; Zhao K; Kuga Y; Zhong X; Bisquert J
    ACS Nano; 2015 Jan; 9(1):908-15. PubMed ID: 25562411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Developments in Counter Electrode Materials for Quantum Dot-Sensitized Solar Cells.
    Shen C
    J Nanosci Nanotechnol; 2019 Jan; 19(1):1-11. PubMed ID: 30326997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombination in quantum dot sensitized solar cells.
    Mora-Seró I; Giménez S; Fabregat-Santiago F; Gómez R; Shen Q; Toyoda T; Bisquert J
    Acc Chem Res; 2009 Nov; 42(11):1848-57. PubMed ID: 19722527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells.
    Wang J; Mora-Seró I; Pan Z; Zhao K; Zhang H; Feng Y; Yang G; Zhong X; Bisquert J
    J Am Chem Soc; 2013 Oct; 135(42):15913-22. PubMed ID: 24070636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV
    Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of Iodine-Free Redox Shuttles in Dye-Sensitized Solar Cells: Interfacial Recombination and Dye Regeneration.
    Sun Z; Liang M; Chen J
    Acc Chem Res; 2015 Jun; 48(6):1541-50. PubMed ID: 26001106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum-dot-sensitized solar cells.
    Rühle S; Shalom M; Zaban A
    Chemphyschem; 2010 Aug; 11(11):2290-304. PubMed ID: 20632355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices.
    Zhang Y; Wu G; Liu F; Ding C; Zou Z; Shen Q
    Chem Soc Rev; 2020 Jan; 49(1):49-84. PubMed ID: 31825404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control.
    Zhao K; Pan Z; Mora-Seró I; Cánovas E; Wang H; Song Y; Gong X; Wang J; Bonn M; Bisquert J; Zhong X
    J Am Chem Soc; 2015 Apr; 137(16):5602-9. PubMed ID: 25860792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semiconductor quantum dot-sensitized solar cells.
    Tian J; Cao G
    Nano Rev; 2013 Oct; 4():. PubMed ID: 24191178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inorganic Ligand Thiosulfate-Capped Quantum Dots for Efficient Quantum Dot Sensitized Solar Cells.
    Ren Z; Yu J; Pan Z; Wang J; Zhong X
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18936-18944. PubMed ID: 28508629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zn-Ag-In-S quantum dot sensitized solar cells with enhanced efficiency by tuning defects.
    Zhang H; Fang W; Zhong Y; Zhao Q
    J Colloid Interface Sci; 2019 Jul; 547():267-274. PubMed ID: 30954770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Efficient Copper-Indium-Selenide Quantum Dot Solar Cells: Suppression of Carrier Recombination by Controlled ZnS Overlayers.
    Kim JY; Yang J; Yu JH; Baek W; Lee CH; Son HJ; Hyeon T; Ko MJ
    ACS Nano; 2015 Nov; 9(11):11286-95. PubMed ID: 26431392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Strategy to Enhance the Efficiency of Quantum Dot-Sensitized Solar Cells by Decreasing Electron Recombination with Polyoxometalate/TiO
    Chen L; Chen W; Li J; Wang J; Wang E
    ChemSusChem; 2017 Jul; 10(14):2945-2954. PubMed ID: 28544657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances and Challenges in Light Conversion Phosphor Materials for Third-Generation Quantum-Dot-Sensitized Photovoltaics.
    Sekar R; Ravitchandiran A; Angaiah S
    ACS Omega; 2022 Oct; 7(40):35351-35360. PubMed ID: 36249370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Titanium oxide morphology controls charge collection efficiency in quantum dot solar cells.
    Kolay A; Kumar PN; Kumar SK; Deepa M
    Phys Chem Chem Phys; 2017 Feb; 19(6):4607-4617. PubMed ID: 28124689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.