These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 26879244)

  • 21. Quantum Dot Based Solar Cells: Role of Nanoarchitectures, Perovskite Quantum Dots, and Charge-Transporting Layers.
    Shaikh JS; Shaikh NS; Mali SS; Patil JV; Beknalkar SA; Patil AP; Tarwal NL; Kanjanaboos P; Hong CK; Patil PS
    ChemSusChem; 2019 Nov; 12(21):4724-4753. PubMed ID: 31347771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of Nanostructures and Interfaces of Metal Oxide Semiconductors for Quantum-Dots-Sensitized Solar Cells.
    Tian J; Cao G
    J Phys Chem Lett; 2015 May; 6(10):1859-69. PubMed ID: 26263261
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of eco-friendly CuInS2 quantum dot-sensitized solar cells by a combined ex situ/in situ growth approach.
    Chang CC; Chen JK; Chen CP; Yang CH; Chang JY
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11296-306. PubMed ID: 24095097
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solar Paint from TiO
    Shen G; Du Z; Pan Z; Du J; Zhong X
    ACS Omega; 2018 Jan; 3(1):1102-1109. PubMed ID: 31457952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dipolar Molecular Capping in Quantum Dot-Sensitized Oxides: Fermi Level Pinning Precludes Tuning Donor-Acceptor Energetics.
    Wang HI; Lu H; Nagata Y; Bonn M; Cánovas E
    ACS Nano; 2017 May; 11(5):4760-4767. PubMed ID: 28388028
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased Quantum Dot Loading by pH Control Reduces Interfacial Recombination in Quantum-Dot-Sensitized Solar Cells.
    Roelofs KE; Herron SM; Bent SF
    ACS Nano; 2015 Aug; 9(8):8321-34. PubMed ID: 26244426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture.
    Chang JY; Lin JM; Su LF; Chang CF
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8740-52. PubMed ID: 23937511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Capping Ligand-Induced Self-Assembly for Quantum Dot Sensitized Solar Cells.
    Li W; Zhong X
    J Phys Chem Lett; 2015 Mar; 6(5):796-806. PubMed ID: 26262655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low-Cost Copper Nanostructures Impart High Efficiencies to Quantum Dot Solar Cells.
    Kumar PN; Deepa M; Ghosal P
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13303-13. PubMed ID: 26000891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Infra-red photoresponse of mesoscopic NiO-based solar cells sensitized with PbS quantum dot.
    Raissi M; Pellegrin Y; Jobic S; Boujtita M; Odobel F
    Sci Rep; 2016 Apr; 6():24908. PubMed ID: 27125454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Boosting the Performance of Environmentally Friendly Quantum Dot-Sensitized Solar Cells over 13% Efficiency by Dual Sensitizers with Cascade Energy Structure.
    Pan Z; Yue L; Rao H; Zhang J; Zhong X; Zhu Z; Jen AK
    Adv Mater; 2019 Dec; 31(49):e1903696. PubMed ID: 31621961
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High Efficiency Quantum Dot Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots on Photoanodes.
    Wang W; Jiang G; Yu J; Wang W; Pan Z; Nakazawa N; Shen Q; Zhong X
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22549-22559. PubMed ID: 28621932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hidden energy levels? Carrier transport ability of CdS/CdS
    Gualdrón-Reyes AF; Meléndez AM; Tirado J; Mejia-Escobar MA; Jaramillo F; Niño-Gómez ME
    Nanoscale; 2019 Jan; 11(2):762-774. PubMed ID: 30566154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interface Engineering in Quantum-Dot-Sensitized Solar Cells.
    Halder G; Ghosh D; Ali MY; Sahasrabudhe A; Bhattacharyya S
    Langmuir; 2018 Sep; 34(35):10197-10216. PubMed ID: 29584956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum dot solar cells: hole transfer as a limiting factor in boosting the photoconversion efficiency.
    Kamat PV; Christians JA; Radich EJ
    Langmuir; 2014 May; 30(20):5716-25. PubMed ID: 24669885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel Ruthenium Sensitizers with a Phenothiazine Conjugated Bipyridyl Ligand for High-Efficiency Dye-Sensitized Solar Cells.
    She Z; Cheng Y; Zhang L; Li X; Wu D; Guo Q; Lan J; Wang R; You J
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27831-7. PubMed ID: 26624527
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CdSe-CdS quantum dots co-sensitized ZnO hierarchical hybrids for solar cells with enhanced photo-electrical conversion efficiency.
    Yuan Z; Yin L
    Nanoscale; 2014 Nov; 6(21):13135-44. PubMed ID: 25251160
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative advantages of Zn-Cu-In-S alloy QDs in the construction of quantum dot-sensitized solar cells.
    Yue L; Rao H; Du J; Pan Z; Yu J; Zhong X
    RSC Adv; 2018 Jan; 8(7):3637-3645. PubMed ID: 35542942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Materials and interfaces in quantum dot sensitized solar cells: challenges, advances and prospects.
    Hod I; Zaban A
    Langmuir; 2014 Jul; 30(25):7264-73. PubMed ID: 24369734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alloying Strategy in Cu-In-Ga-Se Quantum Dots for High Efficiency Quantum Dot Sensitized Solar Cells.
    Peng W; Du J; Pan Z; Nakazawa N; Sun J; Du Z; Shen G; Yu J; Hu JS; Shen Q; Zhong X
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5328-5336. PubMed ID: 28092935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.