These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 26879290)
1. The use of azide-alkyne click chemistry in recent syntheses and applications of polytriazole-based nanostructured polymers. Shi Y; Cao X; Gao H Nanoscale; 2016 Mar; 8(9):4864-81. PubMed ID: 26879290 [TBL] [Abstract][Full Text] [Related]
2. Chain-growth click polymerization of AB2 monomers for the formation of hyperbranched polymers with low polydispersities in a one-pot process. Shi Y; Graff RW; Cao X; Wang X; Gao H Angew Chem Int Ed Engl; 2015 Jun; 54(26):7631-5. PubMed ID: 26081420 [TBL] [Abstract][Full Text] [Related]
4. Tandem Functionalization in a Highly Branched Polymer with Layered Structure. Cao X; Shi Y; Gan W; Gao H Chemistry; 2018 Apr; 24(22):5974-5981. PubMed ID: 29457663 [TBL] [Abstract][Full Text] [Related]
5. Hyperbranched polymers: advances from synthesis to applications. Zheng Y; Li S; Weng Z; Gao C Chem Soc Rev; 2015 Jun; 44(12):4091-130. PubMed ID: 25902871 [TBL] [Abstract][Full Text] [Related]
10. Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne "click" chemistry. Lutz JF; Zarafshani Z Adv Drug Deliv Rev; 2008 Jun; 60(9):958-70. PubMed ID: 18406491 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies. van Dijk M; Rijkers DT; Liskamp RM; van Nostrum CF; Hennink WE Bioconjug Chem; 2009 Nov; 20(11):2001-16. PubMed ID: 19606898 [TBL] [Abstract][Full Text] [Related]
12. Click dendrimers and triazole-related aspects: catalysts, mechanism, synthesis, and functions. A bridge between dendritic architectures and nanomaterials. Astruc D; Liang L; Rapakousiou A; Ruiz J Acc Chem Res; 2012 Apr; 45(4):630-40. PubMed ID: 22148925 [TBL] [Abstract][Full Text] [Related]
13. Intramolecularly Cross-Linked Polymers: From Structure to Function with Applications as Artificial Antibodies and Artificial Enzymes. Chen J; Garcia ES; Zimmerman SC Acc Chem Res; 2020 Jun; 53(6):1244-1256. PubMed ID: 32441091 [TBL] [Abstract][Full Text] [Related]
14. Polylactic-Containing Hyperbranched Polymers through the CuAAC Polymerization of Aromatic AB Pacini A; Nitti A; Vitale M; Pasini D Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108783 [TBL] [Abstract][Full Text] [Related]
15. Core-clickable PEG-branch-azide bivalent-bottle-brush polymers by ROMP: grafting-through and clicking-to. Johnson JA; Lu YY; Burts AO; Lim YH; Finn MG; Koberstein JT; Turro NJ; Tirrell DA; Grubbs RH J Am Chem Soc; 2011 Jan; 133(3):559-66. PubMed ID: 21142161 [TBL] [Abstract][Full Text] [Related]
16. Self-sorting click reactions that generate spatially controlled chemical functionality on surfaces. Arnold RM; Locklin J Langmuir; 2013 May; 29(19):5920-6. PubMed ID: 23581996 [TBL] [Abstract][Full Text] [Related]
17. Copper Nanoparticles in Click Chemistry. Alonso F; Moglie Y; Radivoy G Acc Chem Res; 2015 Sep; 48(9):2516-28. PubMed ID: 26332570 [TBL] [Abstract][Full Text] [Related]
18. Click construction of spiro- and bridged-quatrefoil polymer topologies with kyklo-telechelics having an azide group. Ko YS; Yamamoto T; Tezuka Y Macromol Rapid Commun; 2014 Feb; 35(4):412-6. PubMed ID: 24038235 [TBL] [Abstract][Full Text] [Related]
19. Alkynylcopper(I) polymers and their use in a mechanistic study of alkyne-azide click reactions. Buckley BR; Dann SE; Harris DP; Heaney H; Stubbs EC Chem Commun (Camb); 2010 Apr; 46(13):2274-6. PubMed ID: 20234930 [TBL] [Abstract][Full Text] [Related]
20. Improved metal-adhesive polymers from copper(I)-catalyzed azide-alkyne cycloaddition. Accurso AA; Delaney M; O'Brien J; Kim H; Iovine PM; Díaz Díaz D; Finn MG Chemistry; 2014 Aug; 20(34):10710-9. PubMed ID: 24820000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]