BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 26879293)

  • 1. Expression of Kir4.1 and Kir5.1 inwardly rectifying potassium channels in oligodendrocytes, the myelinating cells of the CNS.
    Brasko C; Hawkins V; De La Rocha IC; Butt AM
    Brain Struct Funct; 2017 Jan; 222(1):41-59. PubMed ID: 26879293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions.
    Butt AM; Kalsi A
    J Cell Mol Med; 2006; 10(1):33-44. PubMed ID: 16563220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility.
    Larson VA; Mironova Y; Vanderpool KG; Waisman A; Rash JE; Agarwal A; Bergles DE
    Elife; 2018 Mar; 7():. PubMed ID: 29596047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A critical role for the inward rectifying potassium channel Kir7.1 in oligodendrocytes of the mouse optic nerve.
    Papanikolaou M; Butt AM; Lewis A
    Brain Struct Funct; 2020 Apr; 225(3):925-934. PubMed ID: 32086565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential assembly of inwardly rectifying K+ channel subunits, Kir4.1 and Kir5.1, in brain astrocytes.
    Hibino H; Fujita A; Iwai K; Yamada M; Kurachi Y
    J Biol Chem; 2004 Oct; 279(42):44065-73. PubMed ID: 15310750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kir4.1 expression by astrocytes and oligodendrocytes in CNS white matter: a developmental study in the rat optic nerve.
    Kalsi AS; Greenwood K; Wilkin G; Butt AM
    J Anat; 2004 Jun; 204(6):475-85. PubMed ID: 15198689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination.
    Neusch C; Rozengurt N; Jacobs RE; Lester HA; Kofuji P
    J Neurosci; 2001 Aug; 21(15):5429-38. PubMed ID: 11466414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An inward rectifier K(+) channel at the basolateral membrane of the mouse distal convoluted tubule: similarities with Kir4-Kir5.1 heteromeric channels.
    Lourdel S; Paulais M; Cluzeaud F; Bens M; Tanemoto M; Kurachi Y; Vandewalle A; Teulon J
    J Physiol; 2002 Jan; 538(Pt 2):391-404. PubMed ID: 11790808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential expression and distribution of Kir5.1 and Kir4.1 inwardly rectifying K+ channels in retina.
    Ishii M; Fujita A; Iwai K; Kusaka S; Higashi K; Inanobe A; Hibino H; Kurachi Y
    Am J Physiol Cell Physiol; 2003 Aug; 285(2):C260-7. PubMed ID: 12686518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential loss of KIR4.1 immunoreactivity in multiple sclerosis lesions.
    Schirmer L; Srivastava R; Kalluri SR; Böttinger S; Herwerth M; Carassiti D; Srivastava B; Gempt J; Schlegel J; Kuhlmann T; Korn T; Reynolds R; Hemmer B
    Ann Neurol; 2014 Jun; 75(6):810-28. PubMed ID: 24777949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH.
    Yang Z; Xu H; Cui N; Qu Z; Chanchevalap S; Shen W; Jiang C
    J Gen Physiol; 2000 Jul; 116(1):33-45. PubMed ID: 10871638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glial heterogeneity in expression of the inwardly rectifying K(+) channel, Kir4.1, in adult rat CNS.
    Poopalasundaram S; Knott C; Shamotienko OG; Foran PG; Dolly JO; Ghiani CA; Gallo V; Wilkin GP
    Glia; 2000 Jun; 30(4):362-72. PubMed ID: 10797616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo formation of a proton-sensitive K+ channel by heteromeric subunit assembly of Kir5.1 with Kir4.1.
    Tanemoto M; Kittaka N; Inanobe A; Kurachi Y
    J Physiol; 2000 Jun; 525 Pt 3(Pt 3):587-92. PubMed ID: 10856114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of inwardly rectifying K+ channels in the carotid body of rat.
    Yamamoto Y; Ishikawa R; Omoe K; Taniguchi K
    Histol Histopathol; 2008 Jul; 23(7):799-806. PubMed ID: 18437678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kir4.1/Kir5.1 Activity Is Essential for Dietary Sodium Intake-Induced Modulation of Na-Cl Cotransporter.
    Wu P; Gao ZX; Su XT; Wang MX; Wang WH; Lin DH
    J Am Soc Nephrol; 2019 Feb; 30(2):216-227. PubMed ID: 30559144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion channel expression by white matter glia: I. Type 2 astrocytes and oligodendrocytes.
    Barres BA; Chun LL; Corey DP
    Glia; 1988; 1(1):10-30. PubMed ID: 2466789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of kir4.1 and kir5.1 by hypercapnia and intracellular acidosis.
    Xu H; Cui N; Yang Z; Qu Z; Jiang C
    J Physiol; 2000 May; 524 Pt 3(Pt 3):725-35. PubMed ID: 10790154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Severe Convulsions and Dysmyelination in Both Jimpy and Cx32/47
    Chaban YHG; Chen Y; Hertz E; Hertz L
    Neurochem Res; 2017 Jun; 42(6):1747-1766. PubMed ID: 28214987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of inwardly rectifying K+ channel 5.1 (Kir5.1) in the regulation of renal membrane transport.
    Lin DH; Duan XP; Zheng JY; Wang WH
    Curr Opin Nephrol Hypertens; 2022 Sep; 31(5):479-485. PubMed ID: 35894283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of renal Nedd4-2 abolishes the effect of high K
    Xiao Y; Duan XP; Zhang DD; Wang WH; Lin DH
    Am J Physiol Renal Physiol; 2021 Jul; 321(1):F1-F11. PubMed ID: 34029145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.