BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26879543)

  • 1. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway.
    Hatori Y; Yan Y; Schmidt K; Furukawa E; Hasan NM; Yang N; Liu CN; Sockanathan S; Lutsenko S
    Nat Commun; 2016 Feb; 7():10640. PubMed ID: 26879543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol-based copper handling by the copper chaperone Atox1.
    Hatori Y; Inouye S; Akagi R
    IUBMB Life; 2017 Apr; 69(4):246-254. PubMed ID: 28294521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An expanding range of functions for the copper chaperone/antioxidant protein Atox1.
    Hatori Y; Lutsenko S
    Antioxid Redox Signal; 2013 Sep; 19(9):945-57. PubMed ID: 23249252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional partnership of the copper export machinery and glutathione balance in human cells.
    Hatori Y; Clasen S; Hasan NM; Barry AN; Lutsenko S
    J Biol Chem; 2012 Aug; 287(32):26678-87. PubMed ID: 22648419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox sulfur chemistry of the copper chaperone Atox1 is regulated by the enzyme glutaredoxin 1, the reduction potential of the glutathione couple GSSG/2GSH and the availability of Cu(I).
    Brose J; La Fontaine S; Wedd AG; Xiao Z
    Metallomics; 2014 Apr; 6(4):793-808. PubMed ID: 24522867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-regulated metal-ligand switching in the HM loop of ATP7A: a new paradigm for metal transfer chemistry.
    Kline CD; Gambill BF; Mayfield M; Lutsenko S; Blackburn NJ
    Metallomics; 2016 Aug; 8(8):729-33. PubMed ID: 27242196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase.
    Hamza I; Prohaska J; Gitlin JD
    Proc Natl Acad Sci U S A; 2003 Feb; 100(3):1215-20. PubMed ID: 12538877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of Human Copper Chaperone Atox1 and Disulfide Bond Cleavage by Cisplatin and Glutathione.
    Nardella MI; Rosato A; Belviso BD; Caliandro R; Natile G; Arnesano F
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31500118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper chaperone Atox1 interacts with the metal-binding domain of Wilson's disease protein in cisplatin detoxification.
    Dolgova NV; Nokhrin S; Yu CH; George GN; Dmitriev OY
    Biochem J; 2013 Aug; 454(1):147-56. PubMed ID: 23751120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper chaperone Atox1 plays role in breast cancer cell migration.
    Blockhuys S; Wittung-Stafshede P
    Biochem Biophys Res Commun; 2017 Jan; 483(1):301-304. PubMed ID: 28027931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics and stability of the metal binding domains of the Menkes ATPase and their interaction with metallochaperone HAH1.
    Arumugam K; Crouzy S
    Biochemistry; 2012 Nov; 51(44):8885-906. PubMed ID: 23075277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of Copper and Cisplatin to Atox1 Is Mediated by Glutathione through the Formation of Metal-Sulfur Clusters.
    Dolgova NV; Yu C; Cvitkovic JP; Hodak M; Nienaber KH; Summers KL; Cotelesage JJH; Bernholc J; Kaminski GA; Pickering IJ; George GN; Dmitriev OY
    Biochemistry; 2017 Jun; 56(24):3129-3141. PubMed ID: 28549213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered ATP7A expression and other compensatory responses in a murine model of Menkes disease.
    Niciu MJ; Ma XM; El Meskini R; Pachter JS; Mains RE; Eipper BA
    Neurobiol Dis; 2007 Sep; 27(3):278-91. PubMed ID: 17588765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper metallochaperones.
    Robinson NJ; Winge DR
    Annu Rev Biochem; 2010; 79():537-62. PubMed ID: 20205585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper transport into the secretory pathway is regulated by oxygen in macrophages.
    White C; Kambe T; Fulcher YG; Sachdev SW; Bush AI; Fritsche K; Lee J; Quinn TP; Petris MJ
    J Cell Sci; 2009 May; 122(Pt 9):1315-21. PubMed ID: 19351718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Function and regulation of human copper-transporting ATPases.
    Lutsenko S; Barnes NL; Bartee MY; Dmitriev OY
    Physiol Rev; 2007 Jul; 87(3):1011-46. PubMed ID: 17615395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential profiles of copper-induced ROS generation in human neuroblastoma and astrocytoma cells.
    Qian Y; Zheng Y; Abraham L; Ramos KS; Tiffany-Castiglioni E
    Brain Res Mol Brain Res; 2005 Apr; 134(2):323-32. PubMed ID: 15836927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR characterization of copper-binding domains 4-6 of ATP7B .
    Fatemi N; Korzhnev DM; Velyvis A; Sarkar B; Forman-Kay JD
    Biochemistry; 2010 Oct; 49(39):8468-77. PubMed ID: 20799727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper transfer to the N-terminal domain of the Wilson disease protein (ATP7B): X-ray absorption spectroscopy of reconstituted and chaperone-loaded metal binding domains and their interaction with exogenous ligands.
    Ralle M; Lutsenko S; Blackburn NJ
    J Inorg Biochem; 2004 May; 98(5):765-74. PubMed ID: 15134922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation regulates copper-responsive trafficking of the Menkes copper transporting P-type ATPase.
    Veldhuis NA; Valova VA; Gaeth AP; Palstra N; Hannan KM; Michell BJ; Kelly LE; Jennings I; Kemp BE; Pearson RB; Robinson PJ; Camakaris J
    Int J Biochem Cell Biol; 2009 Dec; 41(12):2403-12. PubMed ID: 19576997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.