These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 26879959)

  • 1. Insights into conformational regulation of PfMATE transporter from Pyrococcus furiosus induced by alternating protonation state of Asp41 residue: A molecular dynamics simulation study.
    Jin X; Shao Y; Bai Q; Xue W; Liu H; Yao X
    Biochim Biophys Acta; 2016 Jun; 1860(6):1173-80. PubMed ID: 26879959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms for Two-Step Proton Transfer Reactions in the Outward-Facing Form of MATE Transporter.
    Nishima W; Mizukami W; Tanaka Y; Ishitani R; Nureki O; Sugita Y
    Biophys J; 2016 Mar; 110(6):1346-54. PubMed ID: 27028644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inward-facing conformation of a multidrug resistance MATE family transporter.
    Zakrzewska S; Mehdipour AR; Malviya VN; Nonaka T; Koepke J; Muenke C; Hausner W; Hummer G; Safarian S; Michel H
    Proc Natl Acad Sci U S A; 2019 Jun; 116(25):12275-12284. PubMed ID: 31160466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence and structural determinants of ligand-dependent alternating access of a MATE transporter.
    Jagessar KL; Claxton DP; Stein RA; Mchaourab HS
    Proc Natl Acad Sci U S A; 2020 Mar; 117(9):4732-4740. PubMed ID: 32075917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The N-terminal domain of an archaeal multidrug and toxin extrusion (MATE) transporter mediates proton coupling required for prokaryotic drug resistance.
    Jagessar KL; Mchaourab HS; Claxton DP
    J Biol Chem; 2019 Aug; 294(34):12807-12814. PubMed ID: 31289123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conserved binding site in the N-lobe of prokaryotic MATE transporters suggests a role for Na
    Castellano S; Claxton DP; Ficici E; Kusakizako T; Stix R; Zhou W; Nureki O; Mchaourab HS; Faraldo-Gómez JD
    J Biol Chem; 2021; 296():100262. PubMed ID: 33837745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallographic Analysis of MATE-Type Multidrug Exporter with Its Inhibitors.
    Kusakizako T; Tanaka Y; Hipolito CJ; Suga H; Nureki O
    Methods Mol Biol; 2018; 1700():37-57. PubMed ID: 29177824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the ion coupling mechanism of the MATE transporter ClbM.
    Krah A; Huber RG; Zachariae U; Bond PJ
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183137. PubMed ID: 31786188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Basis of H
    Kusakizako T; Claxton DP; Tanaka Y; Maturana AD; Kuroda T; Ishitani R; Mchaourab HS; Nureki O
    Structure; 2019 Feb; 27(2):293-301.e3. PubMed ID: 30449688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights on Na(+) binding and conformational dynamics in multidrug and toxic compound extrusion transporter NorM.
    Song J; Ji C; Zhang JZ
    Proteins; 2014 Feb; 82(2):240-9. PubMed ID: 23873591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadly conserved Na
    Ficici E; Zhou W; Castellano S; Faraldo-Gómez JD
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):E6172-E6181. PubMed ID: 29915058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Principles of Alternating Access in Multidrug and Toxin Extrusion (MATE) Transporters.
    Claxton DP; Jagessar KL; Mchaourab HS
    J Mol Biol; 2021 Aug; 433(16):166959. PubMed ID: 33774036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for the drug extrusion mechanism by a MATE multidrug transporter.
    Tanaka Y; Hipolito CJ; Maturana AD; Ito K; Kuroda T; Higuchi T; Katoh T; Kato HE; Hattori M; Kumazaki K; Tsukazaki T; Ishitani R; Suga H; Nureki O
    Nature; 2013 Apr; 496(7444):247-51. PubMed ID: 23535598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring Conformational Transitions and Free-Energy Profiles of Proton-Coupled Oligopeptide Transporters.
    Batista MRB; Watts A; José Costa-Filho A
    J Chem Theory Comput; 2019 Nov; 15(11):6433-6443. PubMed ID: 31639304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational transitions of uracil transporter UraA from Escherichia coli: a molecular simulation study.
    Yang L; Yang L; Yu H; Liu L; Zhao X; Huang X
    J Biomol Struct Dyn; 2018 Oct; 36(13):3398-3410. PubMed ID: 29072107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methodology for rigorous modeling of protein conformational changes by Rosetta using DEER distance restraints.
    Del Alamo D; Jagessar KL; Meiler J; Mchaourab HS
    PLoS Comput Biol; 2021 Jun; 17(6):e1009107. PubMed ID: 34133419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A macrocyclic peptide that serves as a cocrystallization ligand and inhibits the function of a MATE family transporter.
    Hipolito CJ; Tanaka Y; Katoh T; Nureki O; Suga H
    Molecules; 2013 Aug; 18(9):10514-30. PubMed ID: 23999725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling between protonation and conformation in cytochrome c oxidase: Insights from constant-pH MD simulations.
    Oliveira AS; Campos SR; Baptista AM; Soares CM
    Biochim Biophys Acta; 2016 Jun; 1857(6):759-71. PubMed ID: 27033303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [In Vitro Selected Macrocyclic Peptides: Tools for Regulating the Conformational Freedom of Transmembrane Proteins].
    Hipolito CJ; Nishio K; Suga H
    Yakugaku Zasshi; 2016; 136(2):191-6. PubMed ID: 26831792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of environment on the structure of Pyrococcus furiosus rubredoxin: a molecular dynamics study.
    Ergenekan CE; Tan ML; Ichiye T
    Proteins; 2005 Dec; 61(4):823-8. PubMed ID: 16245319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.