These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 26880098)

  • 21. Contribution of the incudo-malleolar joint to middle-ear sound transmission.
    Gerig R; Ihrle S; Röösli C; Dalbert A; Dobrev I; Pfiffner F; Eiber A; Huber AM; Sim JH
    Hear Res; 2015 Sep; 327():218-26. PubMed ID: 26209186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fixation and detachment of superior and anterior malleolar ligaments in human middle ear: experiment and modeling.
    Dai C; Cheng T; Wood MW; Gan RZ
    Hear Res; 2007 Aug; 230(1-2):24-33. PubMed ID: 17517484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of tympanic membrane perforation on middle ear transmission in gerbil.
    Stomackin G; Kidd S; Jung TT; Martin GK; Dong W
    Hear Res; 2019 Mar; 373():48-58. PubMed ID: 30583199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transient response of the human ear to impulsive stimuli: A finite element analysis.
    Zhang J; Tian J; Ta N; Rao Z
    J Acoust Soc Am; 2018 May; 143(5):2768. PubMed ID: 29857768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Cartilage Overlay on the Tympanic Membrane: Lessons From a Temporal Bone Study for Cartilage Tympanoplasty.
    Eldaebes MMAS; Landry TG; Bance ML
    Otol Neurotol; 2018 Sep; 39(8):995-1004. PubMed ID: 29957671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimal ossicular site for maximal vibration transmissions to coupled transducers.
    Chung J; Song WJ; Sim JH; Kim W; Oh SH
    Hear Res; 2013 Jul; 301():137-45. PubMed ID: 23337694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wave motion on the surface of the human tympanic membrane: holographic measurement and modeling analysis.
    Cheng JT; Hamade M; Merchant SN; Rosowski JJ; Harrington E; Furlong C
    J Acoust Soc Am; 2013 Feb; 133(2):918-37. PubMed ID: 23363110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined high-speed holographic shape and full-field displacement measurements of tympanic membrane.
    Razavi P; Tang H; Rosowski JJ; Furlong C; Cheng JT
    J Biomed Opt; 2018 Sep; 24(3):1-12. PubMed ID: 30255670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contribution of the flexible incudo-malleal joint to middle-ear sound transmission under static pressure loads.
    Warnholtz B; Schär M; Sackmann B; Lauxmann M; Chatzimichalis M; Prochazka L; Dobrev I; Huber AM; Sim JH
    Hear Res; 2021 Jul; 406():108272. PubMed ID: 34038827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acoustic input impedance of the stapes and cochlea in human temporal bones.
    Merchant SN; Ravicz ME; Rosowski JJ
    Hear Res; 1996 Aug; 97(1-2):30-45. PubMed ID: 8844184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies on the mechanics of the normal human middle ear.
    Vlaming MS; Feenstra L
    Clin Otolaryngol Allied Sci; 1986 Oct; 11(5):353-63. PubMed ID: 3536194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of increased stiffness of the incudostapedial joint on the transmission of air-conducted sound by the human middle ear.
    Alian W; Majdalawieh O; Kiefte M; Ejnell H; Bance M
    Otol Neurotol; 2013 Oct; 34(8):1503-9. PubMed ID: 23928510
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A 3D-printed functioning anatomical human middle ear model.
    Kuru I; Maier H; Müller M; Lenarz T; Lueth TC
    Hear Res; 2016 Oct; 340():204-213. PubMed ID: 26772730
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Laser Doppler vibrometric assessment of middle ear motion in Thiel-embalmed heads.
    Stieger C; Candreia C; Kompis M; Herrmann G; Pfiffner F; Widmer D; Arnold A
    Otol Neurotol; 2012 Apr; 33(3):311-8. PubMed ID: 22377645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Repair of subtotal tympanic membrane perforations: A temporal bone study of several tympanoplasty materials.
    Eldaebes MMAS; Landry TG; Bance ML
    PLoS One; 2019; 14(9):e0222728. PubMed ID: 31536572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of middle ear pressure changes on umbo vibration.
    Gyo K; Goode RL
    Auris Nasus Larynx; 1987; 14(3):131-7. PubMed ID: 3451732
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Factors contributing to bone conduction: the outer ear.
    Stenfelt S; Wild T; Hato N; Goode RL
    J Acoust Soc Am; 2003 Feb; 113(2):902-13. PubMed ID: 12597184
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How does closure of tympanic membrane perforations affect hearing and middle ear mechanics? An evaluation in a patient cohort and temporal bone models.
    Röösli C; Sim JH; Chatzimichalis M; Huber AM
    Otol Neurotol; 2012 Apr; 33(3):371-8. PubMed ID: 22222579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. External and middle ear sound pressure distribution and acoustic coupling to the tympanic membrane.
    Bergevin C; Olson ES
    J Acoust Soc Am; 2014 Mar; 135(3):1294-312. PubMed ID: 24606269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.