BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 26880629)

  • 1. Muscle growth across a variety of exercise modalities and intensities: Contributions of mechanical and metabolic stimuli.
    Ozaki H; Loenneke JP; Buckner SL; Abe T
    Med Hypotheses; 2016 Mar; 88():22-6. PubMed ID: 26880629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise and blood flow restriction.
    Pope ZK; Willardson JM; Schoenfeld BJ
    J Strength Cond Res; 2013 Oct; 27(10):2914-26. PubMed ID: 23364292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise.
    Wackerhage H; Schoenfeld BJ; Hamilton DL; Lehti M; Hulmi JJ
    J Appl Physiol (1985); 2019 Jan; 126(1):30-43. PubMed ID: 30335577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy.
    Pearson SJ; Hussain SR
    Sports Med; 2015 Feb; 45(2):187-200. PubMed ID: 25249278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy.
    Farup J; de Paoli F; Bjerg K; Riis S; Ringgard S; Vissing K
    Scand J Med Sci Sports; 2015 Dec; 25(6):754-63. PubMed ID: 25603897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review.
    Abe T; Loenneke JP; Fahs CA; Rossow LM; Thiebaud RS; Bemben MG
    Clin Physiol Funct Imaging; 2012 Jul; 32(4):247-52. PubMed ID: 22681600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inducing hypertrophic effects of type I skeletal muscle fibers: A hypothetical role of time under load in resistance training aimed at muscular hypertrophy.
    Grgic J; Homolak J; Mikulic P; Botella J; Schoenfeld BJ
    Med Hypotheses; 2018 Mar; 112():40-42. PubMed ID: 29447936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction.
    Suga T; Okita K; Morita N; Yokota T; Hirabayashi K; Horiuchi M; Takada S; Takahashi T; Omokawa M; Kinugawa S; Tsutsui H
    J Appl Physiol (1985); 2009 Apr; 106(4):1119-24. PubMed ID: 19213931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental chronic low-frequency resistance training produces skeletal muscle hypertrophy in the absence of muscle damage and metabolic stress markers.
    Zanchi NE; Lira FS; Seelaender M; Lancha AH
    Cell Biochem Funct; 2010 Apr; 28(3):232-8. PubMed ID: 20373468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of exercise with and without different degrees of blood flow restriction on torque and muscle activation.
    Loenneke JP; Kim D; Fahs CA; Thiebaud RS; Abe T; Larson RD; Bemben DA; Bemben MG
    Muscle Nerve; 2015 May; 51(5):713-21. PubMed ID: 25187395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term resistance training with blood flow restriction enhances microvascular filtration capacity of human calf muscles.
    Evans C; Vance S; Brown M
    J Sports Sci; 2010 Jul; 28(9):999-1007. PubMed ID: 20544482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood flow restriction: rationale for improving bone.
    Loenneke JP; Young KC; Fahs CA; Rossow LM; Bemben DA; Bemben MG
    Med Hypotheses; 2012 Apr; 78(4):523-7. PubMed ID: 22305335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possibility of leg muscle hypertrophy by ambulation in older adults: a brief review.
    Ozaki H; Loenneke JP; Thiebaud RS; Stager JM; Abe T
    Clin Interv Aging; 2013; 8():369-75. PubMed ID: 23573066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute and chronic testosterone response to blood flow restricted exercise.
    Loenneke JP; Wilson JM; Pujol TJ; Bemben MG
    Horm Metab Res; 2011 Sep; 43(10):669-73. PubMed ID: 21932169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mechanistic approach to blood flow occlusion.
    Loenneke JP; Wilson GJ; Wilson JM
    Int J Sports Med; 2010 Jan; 31(1):1-4. PubMed ID: 19885776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do metabolites that are produced during resistance exercise enhance muscle hypertrophy?
    Dankel SJ; Mattocks KT; Jessee MB; Buckner SL; Mouser JG; Loenneke JP
    Eur J Appl Physiol; 2017 Nov; 117(11):2125-2135. PubMed ID: 28776271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postexercise hypertrophic adaptations: a reexamination of the hormone hypothesis and its applicability to resistance training program design.
    Schoenfeld BJ
    J Strength Cond Res; 2013 Jun; 27(6):1720-30. PubMed ID: 23442269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training.
    Abe T; Kearns CF; Sato Y
    J Appl Physiol (1985); 2006 May; 100(5):1460-6. PubMed ID: 16339340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood flow-restricted walking does not result in an accumulation of metabolites.
    Loenneke JP; Thrower AD; Balapur A; Barnes JT; Pujol TJ
    Clin Physiol Funct Imaging; 2012 Jan; 32(1):80-2. PubMed ID: 22152083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Practical blood flow restriction training increases muscle hypertrophy during a periodized resistance training programme.
    Lowery RP; Joy JM; Loenneke JP; de Souza EO; Machado M; Dudeck JE; Wilson JM
    Clin Physiol Funct Imaging; 2014 Jul; 34(4):317-21. PubMed ID: 24188499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.