BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 26880629)

  • 21. Cross-transfer effects of resistance training with blood flow restriction.
    Madarame H; Neya M; Ochi E; Nakazato K; Sato Y; Ishii N
    Med Sci Sports Exerc; 2008 Feb; 40(2):258-63. PubMed ID: 18202577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of blood flow occlusion on the development of peripheral and central fatigue during small muscle mass handgrip exercise.
    Broxterman RM; Craig JC; Smith JR; Wilcox SL; Jia C; Warren S; Barstow TJ
    J Physiol; 2015 Sep; 593(17):4043-54. PubMed ID: 26104881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in muscle architecture induced by low load blood flow restricted training.
    Martín-Hernández J; Marín PJ; Menéndez H; Loenneke JP; Coelho-e-Silva MJ; García-López D; Herrero AJ
    Acta Physiol Hung; 2013 Dec; 100(4):411-8. PubMed ID: 24013941
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling.
    Loenneke JP; Fahs CA; Rossow LM; Abe T; Bemben MG
    Med Hypotheses; 2012 Jan; 78(1):151-4. PubMed ID: 22051111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-load resistance exercise with and without blood flow restriction: Which is more effective for increasing local muscle endurance and why?
    Wernbom M
    Exp Physiol; 2024 Jun; 109(6):839-840. PubMed ID: 38520700
    [No Abstract]   [Full Text] [Related]  

  • 26. Blood flow restricted exercise and skeletal muscle health.
    Manini TM; Clark BC
    Exerc Sport Sci Rev; 2009 Apr; 37(2):78-85. PubMed ID: 19305199
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does blood flow restriction result in skeletal muscle damage? A critical review of available evidence.
    Loenneke JP; Thiebaud RS; Abe T
    Scand J Med Sci Sports; 2014 Dec; 24(6):e415-422. PubMed ID: 24650102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exercise metabolism and the molecular regulation of skeletal muscle adaptation.
    Egan B; Zierath JR
    Cell Metab; 2013 Feb; 17(2):162-84. PubMed ID: 23395166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The application of training to failure in periodized multiple-set resistance exercise programs.
    Willardson JM
    J Strength Cond Res; 2007 May; 21(2):628-31. PubMed ID: 17530977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strength Training: In Search of Optimal Strategies to Maximize Neuromuscular Performance.
    Duchateau J; Stragier S; Baudry S; Carpentier A
    Exerc Sport Sci Rev; 2021 Jan; 49(1):2-14. PubMed ID: 33044332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Session rating of perceived exertion following resistance exercise with blood flow restriction.
    Vieira A; Gadelha AB; Ferreira-Junior JB; Vieira CA; Soares Ede M; Cadore EL; Wagner DR; Bottaro M
    Clin Physiol Funct Imaging; 2015 Sep; 35(5):323-7. PubMed ID: 24438467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The molecular basis for load-induced skeletal muscle hypertrophy.
    Marcotte GR; West DW; Baar K
    Calcif Tissue Int; 2015 Mar; 96(3):196-210. PubMed ID: 25359125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationship between limb and trunk muscle hypertrophy following high-intensity resistance training and blood flow-restricted low-intensity resistance training.
    Yasuda T; Ogasawara R; Sakamaki M; Bemben MG; Abe T
    Clin Physiol Funct Imaging; 2011 Sep; 31(5):347-51. PubMed ID: 21771252
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potential safety issues with blood flow restriction training.
    Loenneke JP; Wilson JM; Wilson GJ; Pujol TJ; Bemben MG
    Scand J Med Sci Sports; 2011 Aug; 21(4):510-8. PubMed ID: 21410544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Muscular adaptations to resistance exercise in the elderly.
    Narici MV; Reeves ND; Morse CI; Maganaris CN
    J Musculoskelet Neuronal Interact; 2004 Jun; 4(2):161-4. PubMed ID: 15615118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactions of cortisol, testosterone, and resistance training: influence of circadian rhythms.
    Hayes LD; Bickerstaff GF; Baker JS
    Chronobiol Int; 2010 Jun; 27(4):675-705. PubMed ID: 20560706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human exercise-mediated skeletal muscle hypertrophy is an intrinsic process.
    West DW; Burd NA; Staples AW; Phillips SM
    Int J Biochem Cell Biol; 2010 Sep; 42(9):1371-5. PubMed ID: 20541030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exercise-induced respiratory muscle fatigue: implications for performance.
    Romer LM; Polkey MI
    J Appl Physiol (1985); 2008 Mar; 104(3):879-88. PubMed ID: 18096752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mechanisms of muscle hypertrophy and their application to resistance training.
    Schoenfeld BJ
    J Strength Cond Res; 2010 Oct; 24(10):2857-72. PubMed ID: 20847704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unilateral bicep curl hemodynamics: Low-pressure continuous vs high-pressure intermittent blood flow restriction.
    Brandner CR; Kidgell DJ; Warmington SA
    Scand J Med Sci Sports; 2015 Dec; 25(6):770-7. PubMed ID: 25055880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.