These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26881042)

  • 1. Proliferation of Human Primary Myoblasts Is Associated with Altered Energy Metabolism in Dependence on Ageing In Vivo and In Vitro.
    Pääsuke R; Eimre M; Piirsoo A; Peet N; Laada L; Kadaja L; Roosimaa M; Pääsuke M; Märtson A; Seppet E; Paju K
    Oxid Med Cell Longev; 2016; 2016():8296150. PubMed ID: 26881042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of myogenin on muscle fiber types and key metabolic enzymes in gene transfer mice and C2C12 myoblasts.
    Zhu LN; Ren Y; Chen JQ; Wang YZ
    Gene; 2013 Dec; 532(2):246-52. PubMed ID: 24055422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphotransfer dynamics in skeletal muscle from creatine kinase gene-deleted mice.
    Dzeja PP; Terzic A; Wieringa B
    Mol Cell Biochem; 2004; 256-257(1-2):13-27. PubMed ID: 14977167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-energy carriers in human cultured muscle cells.
    Bolhuis PA; de Zwart HJ; Ponne NJ; de Jong JM
    Muscle Nerve; 1985 Jan; 8(1):22-6. PubMed ID: 4058454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular Energy-Transfer Networks and High-Resolution Respirometry: A Convenient Approach for Studying Their Function.
    Puurand M; Tepp K; Klepinin A; Klepinina L; Shevchuk I; Kaambre T
    Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30261663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related changes in ATP-producing pathways in human skeletal muscle in vivo.
    Lanza IR; Befroy DE; Kent-Braun JA
    J Appl Physiol (1985); 2005 Nov; 99(5):1736-44. PubMed ID: 16002769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Casiopeina II-gly and bromo-pyruvate inhibition of tumor hexokinase, glycolysis, and oxidative phosphorylation.
    Marín-Hernández A; Gallardo-Pérez JC; López-Ramírez SY; García-García JD; Rodríguez-Zavala JS; Ruiz-Ramírez L; Gracia-Mora I; Zentella-Dehesa A; Sosa-Garrocho M; Macías-Silva M; Moreno-Sánchez R; Rodríguez-Enríquez S
    Arch Toxicol; 2012 May; 86(5):753-66. PubMed ID: 22349057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of the bioenergetics of adult cardiomyocytes and nonbeating HL-1 cells: respiratory chain activities, glycolytic enzyme profiles, and metabolic fluxes.
    Monge C; Beraud N; Tepp K; Pelloux S; Chahboun S; Kaambre T; Kadaja L; Roosimaa M; Piirsoo A; Tourneur Y; Kuznetsov AV; Saks V; Seppet E
    Can J Physiol Pharmacol; 2009 Apr; 87(4):318-26. PubMed ID: 19370085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme adaptations of human skeletal muscle during bicycle short-sprint training and detraining.
    Linossier MT; Dormois D; Perier C; Frey J; Geyssant A; Denis C
    Acta Physiol Scand; 1997 Dec; 161(4):439-45. PubMed ID: 9429650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between metabolic function and skeletal muscle fatigue during a 90 s maximal isometric contraction.
    Sirikul B; Hunter GR; Larson-Meyer DE; Desmond R; Newcomer BR
    Appl Physiol Nutr Metab; 2007 Jun; 32(3):394-9. PubMed ID: 17510673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opposite pathobiochemical fate of pyruvate kinase and adenylate kinase in aged rat skeletal muscle as revealed by proteomic DIGE analysis.
    Doran P; O'Connell K; Gannon J; Kavanagh M; Ohlendieck K
    Proteomics; 2008 Jan; 8(2):364-77. PubMed ID: 18050275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Expression Pattern of
    Ma J; Ren C; Yang H; Zhao J; Wang F; Wan Y
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31635221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superoxide Anion Production and Bioenergetic Profile in Young and Elderly Human Primary Myoblasts.
    Marrone M; La Rovere RML; Guarnieri S; Di Filippo ES; Monaco G; Pietrangelo T; Bultynck G; Fulle S; Mancinelli R
    Oxid Med Cell Longev; 2018; 2018():2615372. PubMed ID: 30140363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Late-onset caloric restriction alters skeletal muscle metabolism by modulating pyruvate metabolism.
    Chen CN; Lin SY; Liao YH; Li ZJ; Wong AM
    Am J Physiol Endocrinol Metab; 2015 Jun; 308(11):E942-9. PubMed ID: 26032513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in situ study of bioenergetic properties of human colorectal cancer: the regulation of mitochondrial respiration and distribution of flux control among the components of ATP synthasome.
    Kaldma A; Klepinin A; Chekulayev V; Mado K; Shevchuk I; Timohhina N; Tepp K; Kandashvili M; Varikmaa M; Koit A; Planken M; Heck K; Truu L; Planken A; Valvere V; Rebane E; Kaambre T
    Int J Biochem Cell Biol; 2014 Oct; 55():171-86. PubMed ID: 25218857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sera from young and older humans equally sustain proliferation and differentiation of human myoblasts.
    George T; Velloso CP; Alsharidah M; Lazarus NR; Harridge SD
    Exp Gerontol; 2010 Nov; 45(11):875-81. PubMed ID: 20688143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presence of (phospho)creatine in developing and adult skeletal muscle of mice without mitochondrial and cytosolic muscle creatine kinase isoforms.
    in 't Zandt HJ; de Groof AJ; Renema WK; Oerlemans FT; Klomp DW; Wieringa B; Heerschap A
    J Physiol; 2003 May; 548(Pt 3):847-58. PubMed ID: 12640020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism.
    Nehlin JO; Just M; Rustan AC; Gaster M
    Biogerontology; 2011 Aug; 12(4):349-65. PubMed ID: 21512720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expansion capacity of human muscle progenitor cells differs by age, sex, and metabolic fuel preference.
    Riddle ES; Bender EL; Thalacker-Mercer AE
    Am J Physiol Cell Physiol; 2018 Nov; 315(5):C643-C652. PubMed ID: 30110562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in the cerebral phosphotransfer network impair energetic homeostasis in an aflatoxin B
    Baldissera MD; Souza CF; Zeppenfeld CC; Descovi S; da Silva AS; Baldisserotto B
    Fish Physiol Biochem; 2018 Aug; 44(4):1051-1059. PubMed ID: 29546539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.