These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26881300)

  • 1. Conducting Carbon Dot-Polypyrrole Nanocomposite for Sensitive Detection of Picric acid.
    Pal A; Sk MP; Chattopadhyay A
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5758-62. PubMed ID: 26881300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocomposite Platform Based on EDTA Modified Ppy/SWNTs for the Sensing of Pb(II) Ions by Electrochemical Method.
    Deshmukh MA; Bodkhe GA; Shirsat S; Ramanavicius A; Shirsat MD
    Front Chem; 2018; 6():451. PubMed ID: 30327766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemistry of conductive polymers 37. Nanoscale monitoring of electrical properties during electrochemical growth of polypyrrole and its aging.
    Lee HJ; Park SM
    J Phys Chem B; 2005 Jul; 109(27):13247-54. PubMed ID: 16852652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioimaging of hyaluronic acid derivatives using nanosized carbon dots.
    Goh EJ; Kim KS; Kim YR; Jung HS; Beack S; Kong WH; Scarcelli G; Yun SH; Hahn SK
    Biomacromolecules; 2012 Aug; 13(8):2554-61. PubMed ID: 22804331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of dialysis-free Kombucha-based bacterial nanocellulose embedded in a polypyrrole/PVA composite for bulk conductivity measurements.
    Nirmal N; Pillay MN; Mariola M; Petruccione F; van Zyl WE
    RSC Adv; 2020 Jul; 10(46):27585-27597. PubMed ID: 35516931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired Design of Strong, Tough, and Highly Conductive Polyol-Polypyrrole Composites for Flexible Electronics.
    Gao F; Zhang N; Fang X; Ma M
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):5692-5698. PubMed ID: 28168873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrodeposition of polypyrrole-multiwalled carbon nanotube-glucose oxidase nanobiocomposite film for the detection of glucose.
    Tsai YC; Li SC; Liao SW
    Biosens Bioelectron; 2006 Oct; 22(4):495-500. PubMed ID: 16870421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polypyrrole-palladium nanocomposite coating of micrometer-sized polymer particles toward a recyclable catalyst.
    Fujii S; Matsuzawa S; Hamasaki H; Nakamura Y; Bouleghlimat A; Buurma NJ
    Langmuir; 2012 Feb; 28(5):2436-47. PubMed ID: 22204384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenosine-derived doped carbon dots: From an insight into effect of N/P co-doping on emission to highly sensitive picric acid sensing.
    Li N; Liu SG; Fan YZ; Ju YJ; Xiao N; Luo HQ; Li NB
    Anal Chim Acta; 2018 Jul; 1013():63-70. PubMed ID: 29501093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Sensitive Detection and Removal of Lead Ions in Water Using Cysteine-Functionalized Graphene Oxide/Polypyrrole Nanocomposite Film Electrode.
    Seenivasan R; Chang WJ; Gunasekaran S
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15935-43. PubMed ID: 26146883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly thermostable, flexible, and conductive films prepared from cellulose, graphite, and polypyrrole nanoparticles.
    Chen J; Xu J; Wang K; Qian X; Sun R
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15641-8. PubMed ID: 26135618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications.
    Li Y; Wang P; Wang L; Lin X
    Biosens Bioelectron; 2007 Jun; 22(12):3120-5. PubMed ID: 17350819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode.
    Li J; Lin X
    Biosens Bioelectron; 2007 Jun; 22(12):2898-905. PubMed ID: 17215117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of a Branchlike MoO(3)/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors.
    Zhang X; Zeng X; Yang M; Qi Y
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1125-30. PubMed ID: 24367933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanotube--conducting-polymer composite nanowires.
    Wang J; Dai J; Yarlagadda T
    Langmuir; 2005 Jan; 21(1):9-12. PubMed ID: 15620278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macromolecular Systems with MSA-Capped CdTe and CdTe/ZnS Core/Shell Quantum Dots as Superselective and Ultrasensitive Optical Sensors for Picric Acid Explosive.
    Dutta P; Saikia D; Adhikary NC; Sarma NS
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24778-90. PubMed ID: 26484725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polypyrrole nanorod networks/carbon nanoparticles composite counter electrodes for high-efficiency dye-sensitized solar cells.
    Peng S; Tian L; Liang J; Mhaisalkar SG; Ramakrishna S
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):397-404. PubMed ID: 22166066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the thermoelectric properties of polymers: application to PEDOT and polypyrrole.
    Culebras M; Uriol B; Gómez CM; Cantarero A
    Phys Chem Chem Phys; 2015 Jun; 17(23):15140-5. PubMed ID: 25990660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical deposition of polypyrrole nanolayers on discontinuous ultrathin gold films.
    Mtsuko D; Avnon A; Lievonen J; Ahlskog M; Menon R
    Nanotechnology; 2008 Mar; 19(12):125304. PubMed ID: 21817725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction and cellular uptake of surface-modified carbon dot nanoparticles by J774.1 macrophages.
    Thoo L; Fahmi MZ; Zulkipli IN; Keasberry N; Idris A
    Cent Eur J Immunol; 2017; 42(3):324-330. PubMed ID: 29204100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.