BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26881513)

  • 1. Tumor dose enhancement by nanoparticles during high dose rate (192)Ir brachytherapy.
    Zabihzadeh M; Arefian S
    J Cancer Res Ther; 2015; 11(4):752-9. PubMed ID: 26881513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A detailed Monte Carlo evaluation of
    Gray T; Bassiri N; David S; Patel DY; Stathakis S; Kirby N; Mayer KM
    Phys Med Biol; 2020 Jul; 65(13):135007. PubMed ID: 32434159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of gold nanoparticles on radiation doses in tumor treatment: a Monte Carlo study.
    Al-Musywel HA; Laref A
    Lasers Med Sci; 2017 Dec; 32(9):2073-2080. PubMed ID: 28948388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential for enhancing external beam radiotherapy for lung cancer using high-Z nanoparticles administered via inhalation.
    Hao Y; Altundal Y; Moreau M; Sajo E; Kumar R; Ngwa W
    Phys Med Biol; 2015 Sep; 60(18):7035-43. PubMed ID: 26309064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ocular brachytherapy dosimetry for 103Pd and 125I in the presence of gold nanoparticles: a Monte Carlo study.
    Asadi S; Vaez-Zadeh M; Vahidian M; Marghchouei M; Masoudi SF
    J Appl Clin Med Phys; 2016 May; 17(3):90-99. PubMed ID: 27167265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental determination of Gd dose enhancement and Gd dose sparing by
    Santibáñez M; Fuentealba M
    Appl Radiat Isot; 2021 Sep; 175():109787. PubMed ID: 34102413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a monte carlo simulation study.
    Zhang SX; Gao J; Buchholz TA; Wang Z; Salehpour MR; Drezek RA; Yu TK
    Biomed Microdevices; 2009 Aug; 11(4):925-33. PubMed ID: 19381816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization.
    Martinov MP; Thomson RM
    Med Phys; 2017 Feb; 44(2):644-653. PubMed ID: 28001308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of dose enhancement in presence of gold nanoparticles in eye brachytherapy by
    Rezaei H; Zabihzadeh M; Ghorbani M; Goli Ahmadabad F; Mostaghimi H
    Australas Phys Eng Sci Med; 2017 Sep; 40(3):545-553. PubMed ID: 28509080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in silico study on the effect of host tissue at brachytherapy dose enhancement by gold nanoparticles.
    Hashemi S; Aghamiri SMR; Jaberi R; Siavashpour Z
    Brachytherapy; 2021; 20(2):420-425. PubMed ID: 33317965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dosimetric perturbations at high-Z interfaces with high dose rate (192)Ir source.
    Zhang H; Das IJ
    Phys Med; 2014 Nov; 30(7):782-90. PubMed ID: 25008150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dose enhancement by various nanoparticles in prostate brachytherapy.
    Ghorbani M; Bakhshabadi M; Golshan A; Knaup C
    Australas Phys Eng Sci Med; 2013 Dec; 36(4):431-40. PubMed ID: 24307601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo dosimetry of the microselectron HDR 192Ir brachytherapy source using MCNP4A.
    Wallace S; Wong T; Fernando W
    Australas Phys Eng Sci Med; 1998 Mar; 21(1):11-7. PubMed ID: 9633148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intratumoral Injection of Low-Energy Photon-Emitting Gold Nanoparticles: A Microdosimetric Monte Carlo-Based Model.
    Laprise-Pelletier M; Ma Y; Lagueux J; Côté MF; Beaulieu L; Fortin MA
    ACS Nano; 2018 Mar; 12(3):2482-2497. PubMed ID: 29498821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the dose enhancement exclusively in tumor tissue due to the presence of GNPs.
    Khodadadi A; Nedaie HA; Sadeghi M; Ghassemi MR; Mesbahi A; Banaee N
    Appl Radiat Isot; 2019 Mar; 145():39-46. PubMed ID: 30580248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated brachytherapy with the Xoft electronic source used in association with iodine, gold, bismuth, gadolinium, and hafnium nano-radioenhancers.
    Mesbahi A; Rajabpour S; Smilowitz HM; Hainfeld JF
    Brachytherapy; 2022; 21(6):968-978. PubMed ID: 36002350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dose reduction in HDR brachytherapy of esophageal cancer using gold and gold alloy plaques: a Monte Carlo study.
    Masoudi SF; Baratian S; Asadi S; Rasouli FS
    Radiat Environ Biophys; 2021 Mar; 60(1):115-124. PubMed ID: 33389051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the effects of cell model and subcellular location of gold nanoparticles on nuclear dose enhancement factors using Monte Carlo simulation.
    Cai Z; Pignol JP; Chattopadhyay N; Kwon YL; Lechtman E; Reilly RM
    Med Phys; 2013 Nov; 40(11):114101. PubMed ID: 24320476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Gold Nanoparticle Radiosensitization on Plasmid DNA Damage Induced by High-Dose-Rate Brachytherapy.
    Yogo K; Misawa M; Shimizu M; Shimizu H; Kitagawa T; Hirayama R; Ishiyama H; Furukawa T; Yasuda H
    Int J Nanomedicine; 2021; 16():359-370. PubMed ID: 33469290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo study of the dose enhancement effect of gold nanoparticles during X-ray therapies and evaluation of the anti-angiogenic effect on tumour capillary vessels.
    Amato E; Italiano A; Leotta S; Pergolizzi S; Torrisi L
    J Xray Sci Technol; 2013; 21(2):237-47. PubMed ID: 23694913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.