These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 26881757)

  • 1. Autofluorescence spectroscopy in the differentiation of laryngeal epithelial lesions - preliminary results.
    Winiarski P; Szewczyk-Golec K; Orłowski P; Kałużna E; Wamka M; Mackiewicz-Nartowicz H; Sinkiewicz A; Fisz JJ
    Acta Otolaryngol; 2016 Jun; 136(6):580-4. PubMed ID: 26881757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of normal and malignant laryngeal tissue by autofluorescence imaging technique.
    Palasz Z; Grobelny A; Pawlik E; Fraczek M; Zalesska-Krecicka M; Klimczak A; Krecicki T
    Auris Nasus Larynx; 2003 Dec; 30(4):385-9. PubMed ID: 14656564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic characterization of oral epithelial dysplasia and squamous cell carcinoma using multiphoton autofluorescence micro-spectroscopy.
    Pal R; Edward K; Ma L; Qiu S; Vargas G
    Lasers Surg Med; 2017 Nov; 49(9):866-873. PubMed ID: 28677822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of the behavior of p53 immunoexpression in smoking associated lesions: Reinke's edema and laryngeal carcinoma.
    Móz LE; Domingues MA; Castilho EC; Branco A; Martins RH
    Inhal Toxicol; 2013 Jan; 25(1):17-20. PubMed ID: 23293969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectrometric measurement in laryngeal cancer.
    Arens C; Reussner D; Neubacher H; Woenckhaus J; Glanz H
    Eur Arch Otorhinolaryngol; 2006 Nov; 263(11):1001-7. PubMed ID: 16944236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Endoscopic imaging techniques in the diagnosis of laryngeal carcinoma and its precursor lesions].
    Arens C; Malzahn K; Dias O; Andrea M; Glanz H
    Laryngorhinootologie; 1999 Dec; 78(12):685-91. PubMed ID: 10666695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo autofluorescence spectroscopy of oral premalignant and malignant lesions: distortion of fluorescence intensity by submucous fibrosis.
    Tsai T; Chen HM; Wang CY; Tsai JC; Chen CT; Chiang CP
    Lasers Surg Med; 2003; 33(1):40-7. PubMed ID: 12866120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autofluorescence imaging in the diagnosis of laryngeal cancer.
    Zargi M; Fajdiga I; Smid L
    Eur Arch Otorhinolaryngol; 2000; 257(1):17-23. PubMed ID: 10664039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnosis of oral cancer by light-induced autofluorescence spectroscopy using double excitation wavelengths.
    Wang CY; Chiang HK; Chen CT; Chiang CP; Kuo YS; Chow SN
    Oral Oncol; 1999 Mar; 35(2):144-50. PubMed ID: 10435148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autofluorescence spectroscopy for the in vivo evaluation of oral submucous fibrosis.
    Haris PS; Balan A; Jayasree RS; Gupta AK
    Photomed Laser Surg; 2009 Oct; 27(5):757-61. PubMed ID: 19712020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Case series about ex vivo identification of squamous cell carcinomas by laser-induced autofluorescence and Fourier transform infrared spectroscopy.
    Tozar T; Andrei IR; Costin R; Pirvulescu R; Pascu ML
    Lasers Med Sci; 2018 May; 33(4):861-869. PubMed ID: 29380083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autofluorescence spectroscopic differentiation between normal and cancerous colorectal tissues by means of a two-peak ratio algorithm.
    Wang CY; Lin JK; Chen BF; Chiang HK
    J Formos Med Assoc; 1999 Dec; 98(12):837-43. PubMed ID: 10634024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Pharyngolaryngography].
    Le Treut A; Lagarde C; Renaud-Salis JL
    Rev Laryngol Otol Rhinol (Bord); 1969; 90(1):55-62. PubMed ID: 5403188
    [No Abstract]   [Full Text] [Related]  

  • 14. Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors.
    Zheng W; Lau W; Cheng C; Soo KC; Olivo M
    Int J Cancer; 2003 Apr; 104(4):477-81. PubMed ID: 12584746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimum wavelength for the differentiation of brain tumor tissue using autofluorescence spectroscopy.
    Saraswathy A; Jayasree RS; Baiju KV; Gupta AK; Pillai VP
    Photomed Laser Surg; 2009 Jun; 27(3):425-33. PubMed ID: 19025404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Autofluorescence laryngoscopy in the diagnosis of laryngeal cancer--early results].
    Zalesska-Krecicka M; Krecicki T; Fraczek M; Bereś-Pawlik E; Zatoński T
    Otolaryngol Pol; 2005; 59(2):195-9. PubMed ID: 16095087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of early laryngeal cancer and its precursor lesions by a real-time autofluorescence imaging system.
    Dobre M; Poenaru M; Balica NC; Doros CI
    Rom J Morphol Embryol; 2014; 55(4):1377-81. PubMed ID: 25611269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multivariate analysis of laryngeal fluorescence spectra recorded in vivo.
    Eker C; Rydell R; Svanberg K; Andersson-Engels S
    Lasers Surg Med; 2001; 28(3):259-66. PubMed ID: 11295762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser-induced autofluorescence spectroscopy: can it be of importance in detection of bladder lesions?
    Aboumarzouk O; Valentine R; Buist R; Ahmad S; Nabi G; Eljamel S; Moseley H; Kata SG
    Photodiagnosis Photodyn Ther; 2015 Mar; 12(1):76-83. PubMed ID: 25560417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Barium pharyngography: comparison of single and double contrast.
    Semenkovich JW; Balfe DM; Weyman PJ; Heiken JP; Lee JK
    AJR Am J Roentgenol; 1985 Apr; 144(4):715-20. PubMed ID: 3872027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.