BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 26881922)

  • 1. On the Temperature Dependence of Enzyme-Catalyzed Rates.
    Arcus VL; Prentice EJ; Hobbs JK; Mulholland AJ; Van der Kamp MW; Pudney CR; Parker EJ; Schipper LA
    Biochemistry; 2016 Mar; 55(12):1681-8. PubMed ID: 26881922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change in heat capacity accurately predicts vibrational coupling in enzyme catalyzed reactions.
    Arcus VL; Pudney CR
    FEBS Lett; 2015 Aug; 589(17):2200-6. PubMed ID: 26172507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular rate theory (MMRT) provides a thermodynamics rationale to underpin the convergent temperature response in plant leaf respiration.
    Liang LL; Arcus VL; Heskel MA; O'Sullivan OS; Weerasinghe LK; Creek D; Egerton JJG; Tjoelker MG; Atkin OK; Schipper LA
    Glob Chang Biol; 2018 Apr; 24(4):1538-1547. PubMed ID: 29030907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Change in heat capacity for enzyme catalysis determines temperature dependence of enzyme catalyzed rates.
    Hobbs JK; Jiao W; Easter AD; Parker EJ; Schipper LA; Arcus VL
    ACS Chem Biol; 2013 Nov; 8(11):2388-93. PubMed ID: 24015933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures.
    Schipper LA; Hobbs JK; Rutledge S; Arcus VL
    Glob Chang Biol; 2014 Nov; 20(11):3578-86. PubMed ID: 24706438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative Conformational Transitions Underpin the Activation Heat Capacity in the Temperature Dependence of Enzyme Catalysis.
    Walker EJ; Hamill CJ; Crean R; Connolly MS; Warrender AK; Kraakman KL; Prentice EJ; Steyn-Ross A; Steyn-Ross M; Pudney CR; van der Kamp MW; Schipper LA; Mulholland AJ; Arcus VL
    ACS Catal; 2024 Apr; 14(7):4379-4394. PubMed ID: 38633402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular adaptations to cold in psychrophilic enzymes.
    Feller G
    Cell Mol Life Sci; 2003 Apr; 60(4):648-62. PubMed ID: 12785714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5'-Methylthioadenosine Phosphorylase.
    Firestone RS; Cameron SA; Karp JM; Arcus VL; Schramm VL
    ACS Chem Biol; 2017 Feb; 12(2):464-473. PubMed ID: 28026167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Inflection Point Hypothesis: The Relationship between the Temperature Dependence of Enzyme-Catalyzed Reaction Rates and Microbial Growth Rates.
    Prentice EJ; Hicks J; Ballerstedt H; Blank LM; Liáng LNL; Schipper LA; Arcus VL
    Biochemistry; 2020 Sep; 59(38):3562-3569. PubMed ID: 32902250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel thermodynamic relationship based on Kramers Theory for studying enzyme kinetics under high viscosity.
    Siddiqui KS; Bokhari SA; Afzal AJ; Singh S
    IUBMB Life; 2004 Jul; 56(7):403-7. PubMed ID: 15545217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of ligand binding and catalysis in human liver medium-chain acyl-CoA dehydrogenase: comparative studies involving normal and 3'-dephosphorylated C8-CoAs and wild-type and Asn191 --> Ala (N191A) mutant enzymes.
    Peterson KL; Peterson KM; Srivastava DK
    Biochemistry; 1998 Sep; 37(36):12659-71. PubMed ID: 9730839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eurythermalism and the temperature dependence of enzyme activity.
    Lee CK; Daniel RM; Shepherd C; Saul D; Cary SC; Danson MJ; Eisenthal R; Peterson ME
    FASEB J; 2007 Jun; 21(8):1934-41. PubMed ID: 17341686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein stability and enzyme activity at extreme biological temperatures.
    Feller G
    J Phys Condens Matter; 2010 Aug; 22(32):323101. PubMed ID: 21386475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold adaptation of enzyme reaction rates.
    Bjelic S; Brandsdal BO; Aqvist J
    Biochemistry; 2008 Sep; 47(38):10049-57. PubMed ID: 18759500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature, Dynamics, and Enzyme-Catalyzed Reaction Rates.
    Arcus VL; Mulholland AJ
    Annu Rev Biophys; 2020 May; 49():163-180. PubMed ID: 32040931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed evolution study of temperature adaptation in a psychrophilic enzyme.
    Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH
    J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic analysis of catalysis by the dihydroorotases from hamster and Bacillus caldolyticus, as compared with the uncatalyzed reaction.
    Huang DT; Kaplan J; Menz RI; Katis VL; Wake RG; Zhao F; Wolfenden R; Christopherson RI
    Biochemistry; 2006 Jul; 45(27):8275-83. PubMed ID: 16819826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Psychrophilic enzymes: molecular basis of cold adaptation.
    Feller G; Gerday C
    Cell Mol Life Sci; 1997 Oct; 53(10):830-41. PubMed ID: 9413552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature as a selective factor in protein evolution: the adaptational strategy of "compromise".
    Somero GN
    J Exp Zool; 1975 Oct; 194(1):175-88. PubMed ID: 1104753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cold-adapted enzymes.
    Siddiqui KS; Cavicchioli R
    Annu Rev Biochem; 2006; 75():403-33. PubMed ID: 16756497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.