BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26882042)

  • 1. Axis inhibition protein 2 deficiency leads to hypoxic pulmonary hypertension through β-catenin signaling pathway.
    Nie X; Qin G; Mao W; Wang W; Chang Y; Wei D; Zhou M; Wu B; Chen J
    J Hypertens; 2016 May; 34(5):877-92. PubMed ID: 26882042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nur77 downregulation triggers pulmonary artery smooth muscle cell proliferation and migration in mice with hypoxic pulmonary hypertension via the Axin2-β-catenin signaling pathway.
    Nie X; Tan J; Dai Y; Mao W; Chen Y; Qin G; Li G; Shen C; Zhao J; Chen J
    Vascul Pharmacol; 2016 Dec; 87():230-241. PubMed ID: 27871853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA-221-3p promotes pulmonary artery smooth muscle cells proliferation by targeting AXIN2 during pulmonary arterial hypertension.
    Nie X; Chen Y; Tan J; Dai Y; Mao W; Qin G; Ye S; Sun J; Yang Z; Chen J
    Vascul Pharmacol; 2019 May; 116():24-35. PubMed ID: 28694128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Up-regulation of caveolin-1 by DJ-1 attenuates rat pulmonary arterial hypertension by inhibiting TGFβ/Smad signaling pathway.
    Gao W; Shao R; Zhang X; Liu D; Liu Y; Fa X
    Exp Cell Res; 2017 Dec; 361(1):192-198. PubMed ID: 29069575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. α-Solanine reverses pulmonary vascular remodeling and vascular angiogenesis in experimental pulmonary artery hypertension.
    Nie X; Dai Y; Tan J; Chen Y; Qin G; Mao W; Zou J; Chang Y; Wang Q; Chen J
    J Hypertens; 2017 Dec; 35(12):2419-2435. PubMed ID: 28704260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Naked cuticle homolog 1 prevents mouse pulmonary arterial hypertension via inhibition of Wnt/β-catenin and oxidative stress.
    Wei S; Lin L; Jiang W; Chen J; Gong G; Sui D
    Aging (Albany NY); 2023 Oct; 15(20):11114-11130. PubMed ID: 37857014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STARS knockout attenuates hypoxia-induced pulmonary arterial hypertension by suppressing pulmonary arterial smooth muscle cell proliferation.
    Shi Z; Wu H; Luo J; Sun X
    Biomed Pharmacother; 2017 Mar; 87():397-404. PubMed ID: 28068629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leptin knockout attenuates hypoxia-induced pulmonary arterial hypertension by inhibiting proliferation of pulmonary arterial smooth muscle cells.
    Chai S; Wang W; Liu J; Guo H; Zhang Z; Wang C; Wang J
    Transl Res; 2015 Dec; 166(6):772-82. PubMed ID: 26470682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STIM2 (Stromal Interaction Molecule 2)-Mediated Increase in Resting Cytosolic Free Ca
    Song S; Carr SG; McDermott KM; Rodriguez M; Babicheva A; Balistrieri A; Ayon RJ; Wang J; Makino A; Yuan JX
    Hypertension; 2018 Mar; 71(3):518-529. PubMed ID: 29358461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Type 2 inositol 1,4,5-trisphosphate receptor inhibits the progression of pulmonary arterial hypertension via calcium signaling and apoptosis.
    Shibata A; Uchida K; Kodo K; Miyauchi T; Mikoshiba K; Takahashi T; Yamagishi H
    Heart Vessels; 2019 Apr; 34(4):724-734. PubMed ID: 30460575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wnt5a inhibits hypoxia-induced pulmonary arterial smooth muscle cell proliferation by downregulation of β-catenin.
    Yu XM; Wang L; Li JF; Liu J; Li J; Wang W; Wang J; Wang C
    Am J Physiol Lung Cell Mol Physiol; 2013 Jan; 304(2):L103-11. PubMed ID: 23144322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Berberine alleviates pulmonary hypertension through Trx1 and β-catenin signaling pathways in pulmonary artery smooth muscle cells.
    Wande Y; Jie L; Aikai Z; Yaguo Z; Linlin Z; Yue G; Hang Z
    Exp Cell Res; 2020 May; 390(1):111910. PubMed ID: 32147507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SUMOylation of Vps34 by SUMO1 promotes phenotypic switching of vascular smooth muscle cells by activating autophagy in pulmonary arterial hypertension.
    Yao Y; Li H; Da X; He Z; Tang B; Li Y; Hu C; Xu C; Chen Q; Wang QK
    Pulm Pharmacol Ther; 2019 Apr; 55():38-49. PubMed ID: 30703554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CTRP9 regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation, apoptosis and migration via TGF-β1/ERK1/2 signaling pathway.
    Li YX; Run L; Shi T; Zhang YJ
    Biochem Biophys Res Commun; 2017 Sep; 490(4):1319-1325. PubMed ID: 28688765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wnt5a attenuates hypoxia-induced pulmonary arteriolar remodeling and right ventricular hypertrophy in mice.
    Jin Y; Wang W; Chai S; Liu J; Yang T; Wang J
    Exp Biol Med (Maywood); 2015 Dec; 240(12):1742-51. PubMed ID: 25956683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoprotegerin Disruption Attenuates HySu-Induced Pulmonary Hypertension Through Integrin αvβ3/FAK/AKT Pathway Suppression.
    Jia D; Zhu Q; Liu H; Zuo C; He Y; Chen G; Lu A
    Circ Cardiovasc Genet; 2017 Feb; 10(1):. PubMed ID: 28077433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deficiency of NOX1/nicotinamide adenine dinucleotide phosphate, reduced form oxidase leads to pulmonary vascular remodeling.
    Iwata K; Ikami K; Matsuno K; Yamashita T; Shiba D; Ibi M; Matsumoto M; Katsuyama M; Cui W; Zhang J; Zhu K; Takei N; Kokai Y; Ohneda O; Yokoyama T; Yabe-Nishimura C
    Arterioscler Thromb Vasc Biol; 2014 Jan; 34(1):110-9. PubMed ID: 24233492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. YC-1 attenuates hypoxia-induced pulmonary arterial hypertension in mice.
    Huh JW; Kim SY; Lee JH; Lee YS
    Pulm Pharmacol Ther; 2011 Dec; 24(6):638-46. PubMed ID: 21963997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordinated action of Axin1 and Axin2 suppresses β-catenin to regulate muscle stem cell function.
    Figeac N; Zammit PS
    Cell Signal; 2015 Aug; 27(8):1652-65. PubMed ID: 25866367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADAMTS8 Promotes the Development of Pulmonary Arterial Hypertension and Right Ventricular Failure: A Possible Novel Therapeutic Target.
    Omura J; Satoh K; Kikuchi N; Satoh T; Kurosawa R; Nogi M; Ohtsuki T; Al-Mamun ME; Siddique MAH; Yaoita N; Sunamura S; Miyata S; Hoshikawa Y; Okada Y; Shimokawa H
    Circ Res; 2019 Oct; 125(10):884-906. PubMed ID: 31556812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.