These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26882095)

  • 1. Commensurability Effects in Viscosity of Nanoconfined Water.
    Neek-Amal M; Peeters FM; Grigorieva IV; Geim AK
    ACS Nano; 2016 Mar; 10(3):3685-92. PubMed ID: 26882095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breakdown of continuum model for water transport and desalination through ultrathin graphene nanopores: insights from molecular dynamics simulations.
    Sahu P; Ali SM
    Phys Chem Chem Phys; 2019 Oct; 21(38):21389-21406. PubMed ID: 31531503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheology of Water Flows Confined between Multilayer Graphene Walls.
    Li F; Korotkin IA; Karabasov SA
    Langmuir; 2020 May; 36(20):5633-5646. PubMed ID: 32370511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between Capillary Wettability, Mass, and Momentum Transfer in Nanoconfined Water: The Case of Water in Nanoslits of Graphite and Hexagonal Boron Nitride.
    Smith L; Wei Z; Williams CD; Chiricotto M; Pereira da Fonte C; Carbone P
    ACS Appl Mater Interfaces; 2024 Oct; 16(41):56316-24. PubMed ID: 39376153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscosity of nanoconfined polyamide-6,6 oligomers: atomistic reverse nonequilibrium molecular dynamics simulation.
    Eslami H; Müller-Plathe F
    J Phys Chem B; 2010 Jan; 114(1):387-95. PubMed ID: 20055525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion.
    Sendner C; Horinek D; Bocquet L; Netz RR
    Langmuir; 2009 Sep; 25(18):10768-81. PubMed ID: 19591481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breakdown of fast water transport in graphene oxides.
    Wei N; Peng X; Xu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012113. PubMed ID: 24580178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-surface viscosity effects on capillary rise of water in nanotubes.
    Vo TQ; Barisik M; Kim B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053009. PubMed ID: 26651781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelasticity and shear thinning of nanoconfined water.
    Kapoor K; Amandeep ; Patil S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013004. PubMed ID: 24580317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow of quasi-two dimensional water in graphene channels.
    Fang C; Wu X; Yang F; Qiao R
    J Chem Phys; 2018 Feb; 148(6):064702. PubMed ID: 29448779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2012 Jan; 136(2):024705. PubMed ID: 22260608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear dynamics of nanoconfined ionic liquids.
    Canova FF; Matsubara H; Mizukami M; Kurihara K; Shluger AL
    Phys Chem Chem Phys; 2014 May; 16(18):8247-56. PubMed ID: 24562163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stick-slip control in nanoscale boundary lubrication by surface wettability.
    Chen W; Foster AS; Alava MJ; Laurson L
    Phys Rev Lett; 2015 Mar; 114(9):095502. PubMed ID: 25793825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydration Friction in Nanoconfinement: From Bulk via Interfacial to Dry Friction.
    Schlaich A; Kappler J; Netz RR
    Nano Lett; 2017 Oct; 17(10):5969-5976. PubMed ID: 28910108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water.
    Bhadauria R; Sanghi T; Aluru NR
    J Chem Phys; 2015 Nov; 143(17):174702. PubMed ID: 26547177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluidity of hydration layers nanoconfined between mica surfaces.
    Leng Y; Cummings PT
    Phys Rev Lett; 2005 Jan; 94(2):026101. PubMed ID: 15698197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscosity of Water Interfaces with Hydrophobic Nanopores: Application to Water Flow in Carbon Nanotubes.
    Shaat M
    Langmuir; 2017 Nov; 33(44):12814-12819. PubMed ID: 29035046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite system size effects in the interfacial dynamics of binary liquid films.
    Thakre AK; Padding JT; den Otter WK; Briels WJ
    J Chem Phys; 2008 Jul; 129(4):044701. PubMed ID: 18681664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slip divergence of water flow in graphene nanochannels: the role of chirality.
    Wagemann E; Oyarzua E; Walther JH; Zambrano HA
    Phys Chem Chem Phys; 2017 Mar; 19(13):8646-8652. PubMed ID: 28195288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear dynamics of hydration layers.
    Leng Y; Cummings PT
    J Chem Phys; 2006 Sep; 125(10):104701. PubMed ID: 16999542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.