These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 26882095)

  • 21. Capillary filling with giant liquid/solid slip: dynamics of water uptake by carbon nanotubes.
    Joly L
    J Chem Phys; 2011 Dec; 135(21):214705. PubMed ID: 22149809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coarse grained molecular dynamics simulation of nanoconfined water.
    Eslami H; Jaafari B; Mehdipour N
    Chemphyschem; 2013 Apr; 14(5):1063-70. PubMed ID: 23440950
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microslips to "Avalanches" in Confined, Molecular Layers of Ionic Liquids.
    Espinosa-Marzal RM; Arcifa A; Rossi A; Spencer ND
    J Phys Chem Lett; 2014 Jan; 5(1):179-84. PubMed ID: 26276199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wettability effect on nanoconfined water flow.
    Wu K; Chen Z; Li J; Li X; Xu J; Dong X
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3358-3363. PubMed ID: 28289228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Viscosity-dependent liquid slip at molecularly smooth hydrophobic surfaces.
    McBride SP; Law BM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):060601. PubMed ID: 20365109
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The interplay between apparent viscosity and wettability in nanoconfined water.
    Ortiz-Young D; Chiu HC; Kim S; Voïtchovsky K; Riedo E
    Nat Commun; 2013; 4():2482. PubMed ID: 24052015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamics study of nanoconfined TIP4P/2005 water: how confinement and temperature affect diffusion and viscosity.
    Zaragoza A; Gonzalez MA; Joly L; López-Montero I; Canales MA; Benavides AL; Valeriani C
    Phys Chem Chem Phys; 2019 Jul; 21(25):13653-13667. PubMed ID: 31190039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Viscosity and Structure of Water and Ethanol within GO Nanochannels: A Molecular Simulation Study.
    Chen Y; Xu Z; Zhan M; Yang X
    J Phys Chem B; 2020 Dec; 124(48):10961-10970. PubMed ID: 33200933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water flow modeling through a graphene-based nanochannel: theory and simulation.
    Kargar M; Lohrasebi A
    Phys Chem Chem Phys; 2019 Feb; 21(6):3304-3309. PubMed ID: 30687856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tuning Water Slip Behavior in Nanochannels Using Self-Assembled Monolayers.
    Huang D; Zhang T; Xiong G; Xu L; Qu Z; Lee E; Luo T
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32481-32488. PubMed ID: 31408315
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast increase of nanofluidic slip in supercooled water: the key role of dynamics.
    Herrero C; Tocci G; Merabia S; Joly L
    Nanoscale; 2020 Oct; 12(39):20396-20403. PubMed ID: 33021296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ionized water confined in graphene nanochannels.
    de Aquino BRH; Ghorbanfekr-Kalashami H; Neek-Amal M; Peeters FM
    Phys Chem Chem Phys; 2019 May; 21(18):9285-9295. PubMed ID: 30931451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Slip length crossover on a graphene surface.
    Liang Z; Keblinski P
    J Chem Phys; 2015 Apr; 142(13):134701. PubMed ID: 25854252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of oil flow in shale nanopores by manipulating friction and viscosity.
    Ho TA; Wang Y
    Phys Chem Chem Phys; 2019 Jun; 21(24):12777-12786. PubMed ID: 31120076
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of the Interfacial Modeling Approach on Equilibrium Calculations of Slip Length for Nanoconfined Water in Carbon Slits.
    Paniagua-Guerra LE; Gonzalez-Valle CU; Ramos-Alvarado B
    Langmuir; 2020 Dec; 36(48):14772-14781. PubMed ID: 33215929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction.
    Ma M; Grey F; Shen L; Urbakh M; Wu S; Liu JZ; Liu Y; Zheng Q
    Nat Nanotechnol; 2015 Aug; 10(8):692-5. PubMed ID: 26149236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Slip boundary conditions for shear flow of polymer melts past atomically flat surfaces.
    Niavarani A; Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041606. PubMed ID: 18517634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The confined [Bmim][BF
    Wang Y; Huo F; He H; Zhang S
    Phys Chem Chem Phys; 2018 Jul; 20(26):17773-17780. PubMed ID: 29922773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of water models on the prediction of slip length of water in graphene nanochannels.
    Celebi AT; Nguyen CT; Hartkamp R; Beskok A
    J Chem Phys; 2019 Nov; 151(17):174705. PubMed ID: 31703484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.