BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26882930)

  • 1. Comparative study of Saccharomyces cerevisiae wine strains to identify potential marker genes correlated to desiccation stress tolerance.
    Capece A; Votta S; Guaragnella N; Zambuto M; Romaniello R; Romano P
    FEMS Yeast Res; 2016 May; 16(3):. PubMed ID: 26882930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification by phenotypic and genetic approaches of an indigenous Saccharomyces cerevisiae wine strain with high desiccation tolerance.
    Zambuto M; Romaniello R; Guaragnella N; Romano P; Votta S; Capece A
    Yeast; 2017 Oct; 34(10):417-426. PubMed ID: 28732117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic improvement of Saccharomyces cerevisiae wine strains for enhancing cell viability after desiccation stress.
    López-Martínez G; Pietrafesa R; Romano P; Cordero-Otero R; Capece A
    Yeast; 2013 Aug; 30(8):319-30. PubMed ID: 23576041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast.
    Gamero-Sandemetrio E; Gómez-Pastor R; Matallana E
    Biotechnol J; 2014 Aug; 9(8):1055-64. PubMed ID: 24644263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of different spray-drying conditions on the viability of wine Saccharomyces cerevisiae strains.
    Aponte M; Troianiello GD; Di Capua M; Romano R; Blaiotta G
    World J Microbiol Biotechnol; 2016 Jan; 32(1):13. PubMed ID: 26712628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress responses and lipid peroxidation damage are induced during dehydration in the production of dry active wine yeasts.
    Garre E; Raginel F; Palacios A; Julien A; Matallana E
    Int J Food Microbiol; 2010 Jan; 136(3):295-303. PubMed ID: 19914726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R; Bruno-Bárcena JM; Matallana E
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria inheritance is a key factor for tolerance to dehydration in wine yeast production.
    Picazo C; Gamero-Sandemetrio E; Orozco H; Albertin W; Marullo P; Matallana E; Aranda A
    Lett Appl Microbiol; 2015 Mar; 60(3):217-22. PubMed ID: 25431242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of yeast starter formulations on the production of volatile compounds during wine fermentation.
    Romano P; Pietrafesa R; Romaniello R; Zambuto M; Calabretti A; Capece A
    Yeast; 2015 Jan; 32(1):245-56. PubMed ID: 25100258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic diversity of FLO1 and FLO5 genes in wine flocculent Saccharomyces cerevisiae strains.
    Tofalo R; Perpetuini G; Di Gianvito P; Schirone M; Corsetti A; Suzzi G
    Int J Food Microbiol; 2014 Nov; 191():45-52. PubMed ID: 25218464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth.
    Pérez-Torrado R; Gómez-Pastor R; Larsson C; Matallana E
    Appl Microbiol Biotechnol; 2009 Jan; 81(5):951-60. PubMed ID: 18836715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains.
    Šuranská H; Vránová D; Omelková J
    Braz J Microbiol; 2016; 47(1):181-90. PubMed ID: 26887243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the expression of some stress induced genes in several commercial wine yeast strains at the beginning of vinification.
    Zuzuarregui A; Carrasco P; Palacios A; Julien A; del Olmo M
    J Appl Microbiol; 2005; 98(2):299-307. PubMed ID: 15659184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative transcriptomic approach to investigate differences in wine yeast physiology and metabolism during fermentation.
    Rossouw D; Olivares-Hernandes R; Nielsen J; Bauer FF
    Appl Environ Microbiol; 2009 Oct; 75(20):6600-12. PubMed ID: 19700545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymorphisms of Saccharomyces cerevisiae genes involved in wine production.
    Vigentini I; Fracassetti D; Picozzi C; Foschino R
    Curr Microbiol; 2009 Mar; 58(3):211-8. PubMed ID: 19005725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.
    Hirasawa T; Nakakura Y; Yoshikawa K; Ashitani K; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S
    Appl Microbiol Biotechnol; 2006 Apr; 70(3):346-57. PubMed ID: 16283296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodiversity of autolytic ability in flocculent Saccharomyces cerevisiae strains suitable for traditional sparkling wine fermentation.
    Perpetuini G; Di Gianvito P; Arfelli G; Schirone M; Corsetti A; Tofalo R; Suzzi G
    Yeast; 2016 Jul; 33(7):303-12. PubMed ID: 26804203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patagonian wines: the selection of an indigenous yeast starter.
    Lopes CA; Rodríguez ME; Sangorrín M; Querol A; Caballero AC
    J Ind Microbiol Biotechnol; 2007 Aug; 34(8):539-46. PubMed ID: 17576609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of stress-related genes enhances cell viability and velum formation in Sherry wine yeasts.
    Fierro-Risco J; Rincón AM; Benítez T; Codón AC
    Appl Microbiol Biotechnol; 2013 Aug; 97(15):6867-81. PubMed ID: 23553032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the stress resistance of commercial wine yeast strains.
    Carrasco P; Querol A; del Olmo M
    Arch Microbiol; 2001 Jun; 175(6):450-7. PubMed ID: 11491086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.