These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 26882997)

  • 1. Kinetics of a Multilamellar Lipid Vesicle Ripening: Simulation and Theory.
    Xu R; He X
    J Phys Chem B; 2016 Mar; 120(9):2262-70. PubMed ID: 26882997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of lamellarity and size on calorimetric phase transitions in single component phosphatidylcholine vesicles.
    Drazenovic J; Wang H; Roth K; Zhang J; Ahmed S; Chen Y; Bothun G; Wunder SL
    Biochim Biophys Acta; 2015 Feb; 1848(2):532-43. PubMed ID: 25445167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid-DNA complex formation: reorganization and rupture of lipid vesicles in the presence of DNA as observed by cryoelectron microscopy.
    Huebner S; Battersby BJ; Grimm R; Cevc G
    Biophys J; 1999 Jun; 76(6):3158-66. PubMed ID: 10354440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent-free coarse-grained lipid model for large-scale simulations.
    Noguchi H
    J Chem Phys; 2011 Feb; 134(5):055101. PubMed ID: 21303161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations of lipid vesicle rupture induced by an adjacent supported lipid bilayer patch.
    Allerbo O; Lundström A; Dimitrievski K
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):632-6. PubMed ID: 20965704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid transfer between charged supported lipid bilayers and oppositely charged vesicles.
    Kunze A; Svedhem S; Kasemo B
    Langmuir; 2009 May; 25(9):5146-58. PubMed ID: 19326873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of mechanical strength of unilamellar and multilamellar AOT/water vesicles and their rupture using micropipet aspiration.
    Sagar GH; Bellare JR
    J Phys Chem B; 2009 Oct; 113(42):13805-10. PubMed ID: 19764699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of lipid transfer between a supported lipid bilayer and adsorbing vesicles.
    Dimitrievski K; Kasemo B
    Colloids Surf B Biointerfaces; 2010 Feb; 75(2):454-65. PubMed ID: 19815394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling leakage kinetics from multilamellar vesicles for membrane permeability determination: application to glucose.
    Faure C; Nallet F; Roux D; Milner ST; Gauffre F; Olea D; Lambert O
    Biophys J; 2006 Dec; 91(12):4340-9. PubMed ID: 16997867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of lipid-bilayer-associated molecules on lipid-vesicle adsorption.
    Dimitrievski K
    Langmuir; 2010 Apr; 26(8):5706-14. PubMed ID: 19968253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extrusion of small vesicles through nanochannels: a model for experiments and molecular dynamics simulations.
    Bertrand M; Joós B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051910. PubMed ID: 23004791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vesicle and bilayer formation of diphytanoylphosphatidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers' electrical stability.
    Andersson M; Jackman J; Wilson D; Jarvoll P; Alfredsson V; Okeyo G; Duran R
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):550-61. PubMed ID: 21071188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reorganizational dynamics of multilamellar lipid bilayer assemblies using continuously scanning Fourier transform infrared spectroscopic imaging.
    Huffman SW; Schlücker S; Levin IW
    Chem Phys Lipids; 2004 Jul; 130(2):167-74. PubMed ID: 15172833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The vesicle-to-micelle transformation of phospholipid-cholate mixed aggregates: a state of the art analysis including membrane curvature effects.
    Elsayed MM; Cevc G
    Biochim Biophys Acta; 2011 Jan; 1808(1):140-53. PubMed ID: 20832388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarse-grained molecular simulations of the melting kinetics of small unilamellar vesicles.
    Patel LA; Kindt JT
    Soft Matter; 2016 Feb; 12(6):1765-77. PubMed ID: 26701014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Monte Carlo simulation study of lipid bilayer formation on hydrophilic substrates from vesicle solutions.
    Zheng Z; Stroumpoulis D; Parra A; Petzold L; Tirrell M
    J Chem Phys; 2006 Feb; 124(6):64904. PubMed ID: 16483241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of vesicle formation from lipid droplets: mechanism and controllability.
    Wang Z; He X
    J Chem Phys; 2009 Mar; 130(9):094905. PubMed ID: 19275422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of (1)H and (31)P NMR to topological description of a model of biological membrane fusion: topological description of a model of biological membrane fusion.
    Janiak-Osajca A; Timoszyk A
    Acta Biochim Pol; 2012; 59(2):219-24. PubMed ID: 22590692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-dependent properties of small unilamellar vesicles formed by model lipids.
    Lin CM; Li CS; Sheng YJ; Wu DT; Tsao HK
    Langmuir; 2012 Jan; 28(1):689-700. PubMed ID: 22126796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-tailed lipid modification as a promising candidate for oligonucleotide delivery in mammalian cells.
    Ugarte-Uribe B; Grijalvo S; Busto JV; Martín C; Eritja R; Goñi FM; Alkorta I
    Biochim Biophys Acta; 2013 Oct; 1830(10):4872-84. PubMed ID: 23800579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.