These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 26883143)

  • 21. fMRI as a Preimplant Objective Tool to Predict Postimplant Oral Language Outcomes in Children with Cochlear Implants.
    Deshpande AK; Tan L; Lu LJ; Altaye M; Holland SK
    Ear Hear; 2016; 37(4):e263-72. PubMed ID: 26689275
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stimulation rate reduction and auditory development in poorly performing cochlear implant users with auditory neuropathy.
    Pelosi S; Rivas A; Haynes DS; Bennett ML; Labadie RF; Hedley-Williams A; Wanna GB
    Otol Neurotol; 2012 Dec; 33(9):1502-6. PubMed ID: 22972423
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Cochlear implant in children: rational, indications and cost/efficacy].
    Martini A; Bovo R; Trevisi P; Forli F; Berrettini S
    Minerva Pediatr; 2013 Jun; 65(3):325-39. PubMed ID: 23685383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased audiovisual integration in cochlear-implanted deaf patients: independent components analysis of longitudinal positron emission tomography data.
    Strelnikov K; Rouger J; Lagleyre S; Fraysse B; Démonet JF; Déguine O; Barone P
    Eur J Neurosci; 2015 Mar; 41(5):677-85. PubMed ID: 25728184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clenching-Related Motion Artifacts in Functional Near-Infrared Spectroscopy in the Auditory Cortex.
    Zhang F; Reid A; Schroeder A; Cutter M; Kim K; Ding L; Yuan H
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4649-4652. PubMed ID: 36086024
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional Near-Infrared Spectroscopy Brain Imaging Investigation of Phonological Awareness and Passage Comprehension Abilities in Adult Recipients of Cochlear Implants.
    Bisconti S; Shulkin M; Hu X; Basura GJ; Kileny PR; Kovelman I
    J Speech Lang Hear Res; 2016 Apr; 59(2):239-53. PubMed ID: 26535956
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Auditory implant research at the House Ear Institute 1989-2013.
    Shannon RV
    Hear Res; 2015 Apr; 322():57-66. PubMed ID: 25449009
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of interdevice interval on speech perception performance among bilateral, pediatric cochlear implant recipients.
    Kocdor P; Iseli CE; Teagle HF; Woodard J; Park L; Zdanski CJ; Brown KD; Adunka OF; Buchman CA
    Laryngoscope; 2016 Oct; 126(10):2389-94. PubMed ID: 27098767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advantages of double density alignment of fNIRS optodes to evaluate cortical activities related to phonological short-term memory using NIRS-SPM.
    Yamazaki H; Kanazawa Y; Omori K
    Hear Res; 2020 Sep; 395():108024. PubMed ID: 32679442
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The benefits of remote microphone technology for adults with cochlear implants.
    Fitzpatrick EM; Séguin C; Schramm DR; Armstrong S; Chénier J
    Ear Hear; 2009 Oct; 30(5):590-9. PubMed ID: 19561509
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Connectivity in Language Areas of the Brain in Cochlear Implant Users as Revealed by fNIRS.
    McKay CM; Shah A; Seghouane AK; Zhou X; Cross W; Litovsky R
    Adv Exp Med Biol; 2016; 894():327-335. PubMed ID: 27080673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cortical Auditory Evoked Potentials Recorded From Nucleus Hybrid Cochlear Implant Users.
    Brown CJ; Jeon EK; Chiou LK; Kirby B; Karsten SA; Turner CW; Abbas PJ
    Ear Hear; 2015; 36(6):723-32. PubMed ID: 26295607
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bilateral cochlear implants in children: Effects of auditory experience and deprivation on auditory perception.
    Litovsky RY; Gordon K
    Hear Res; 2016 Aug; 338():76-87. PubMed ID: 26828740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preservation of hearing in cochlear implant surgery: advantages of combined electrical and acoustical speech processing.
    Gantz BJ; Turner C; Gfeller KE; Lowder MW
    Laryngoscope; 2005 May; 115(5):796-802. PubMed ID: 15867642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PET-imaging of brain plasticity after cochlear implantation.
    Strelnikov K; Marx M; Lagleyre S; Fraysse B; Deguine O; Barone P
    Hear Res; 2015 Apr; 322():180-7. PubMed ID: 25448166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [The cochlear implant--evolution of hearing and language with an artificial inner ear].
    Vischer M; Kompis M; Seifert E; Häusler R
    Ther Umsch; 2004 Jan; 61(1):53-60. PubMed ID: 14998001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Auditory cortical activation and speech perception in cochlear implant users.
    Green KM; Julyan PJ; Hastings DL; Ramsden RT
    J Laryngol Otol; 2008 Mar; 122(3):238-45. PubMed ID: 17517160
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The multi-channel cochlear implant: multi-disciplinary development of electrical stimulation of the cochlea and the resulting clinical benefit.
    Clark GM
    Hear Res; 2015 Apr; 322():4-13. PubMed ID: 25159273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for a right cochlear implant advantage in simultaneous bilateral cochlear implantation.
    Henkin Y; Swead RT; Roth DA; Kishon-Rabin L; Shapira Y; Migirov L; Hildesheimer M; Kaplan-Neeman R
    Laryngoscope; 2014 Aug; 124(8):1937-41. PubMed ID: 24496728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cochlear implantation in children and adults in Switzerland.
    Brand Y; Senn P; Kompis M; Dillier N; Allum JH
    Swiss Med Wkly; 2014 Feb; 144():w13909. PubMed ID: 24496729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.