BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 26883225)

  • 1. Physiological controls of chrysanthemum DgD27 gene expression in regulation of shoot branching.
    Wen C; Zhao Q; Nie J; Liu G; Shen L; Cheng C; Xi L; Ma N; Zhao L
    Plant Cell Rep; 2016 May; 35(5):1053-70. PubMed ID: 26883225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of DgD14 in regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum 'Jinba').
    Wen C; Xi L; Gao B; Wang K; Lv S; Kou Y; Ma N; Zhao L
    Plant Physiol Biochem; 2015 Nov; 96():241-53. PubMed ID: 26310142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of DgBRC1 in regulation of lateral branching in chrysanthemum (Dendranthema ×grandiflora cv. Jinba).
    Chen X; Zhou X; Xi L; Li J; Zhao R; Ma N; Zhao L
    PLoS One; 2013; 8(4):e61717. PubMed ID: 23613914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red to Far-Red Light Ratio Modulates Hormonal and Genetic Control of Axillary bud Outgrowth in Chrysanthemum (
    Yuan C; Ahmad S; Cheng T; Wang J; Pan H; Zhao L; Zhang Q
    Int J Mol Sci; 2018 May; 19(6):. PubMed ID: 29843424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance.
    Nie J; Wen C; Xi L; Lv S; Zhao Q; Kou Y; Ma N; Zhao L; Zhou X
    Plant Cell Rep; 2018 Jul; 37(7):1049-1060. PubMed ID: 29687169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Change in Auxin and Cytokinin Levels Coincides with Altered Expression of Branching Genes during Axillary Bud Outgrowth in Chrysanthemum.
    Dierck R; De Keyser E; De Riek J; Dhooghe E; Van Huylenbroeck J; Prinsen E; Van Der Straeten D
    PLoS One; 2016; 11(8):e0161732. PubMed ID: 27557329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strigolactone regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum).
    Liang J; Zhao L; Challis R; Leyser O
    J Exp Bot; 2010 Jun; 61(11):3069-78. PubMed ID: 20478970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.).
    Xu J; Zha M; Li Y; Ding Y; Chen L; Ding C; Wang S
    Plant Cell Rep; 2015 Sep; 34(9):1647-62. PubMed ID: 26024762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1.
    van Rongen M; Bennett T; Ticchiarelli F; Leyser O
    PLoS Genet; 2019 Mar; 15(3):e1008023. PubMed ID: 30865619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane.
    Shinohara N; Taylor C; Leyser O
    PLoS Biol; 2013; 11(1):e1001474. PubMed ID: 23382651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of auxin in the inhibition of shoot branching in 'Dugan' fir.
    Yang L; Zhu S; Xu J
    Tree Physiol; 2022 Jul; 42(7):1411-1431. PubMed ID: 35088089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chrysanthemum MADS-box transcription factor CmANR1 modulates lateral root development via homo-/heterodimerization to influence auxin accumulation in Arabidopsis.
    Sun CH; Yu JQ; Wen LZ; Guo YH; Sun X; Hao YJ; Hu DG; Zheng CS
    Plant Sci; 2018 Jan; 266():27-36. PubMed ID: 29241564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of gibberellin 20-oxidase1 (AtGA20ox1) in Arabidopsis seedlings with altered auxin status is regulated at multiple levels.
    Desgagné-Penix I; Sponsel VM
    J Exp Bot; 2008; 59(8):2057-70. PubMed ID: 18440929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strigolactones are involved in root response to low phosphate conditions in Arabidopsis.
    Mayzlish-Gati E; De-Cuyper C; Goormachtig S; Beeckman T; Vuylsteke M; Brewer PB; Beveridge CA; Yermiyahu U; Kaplan Y; Enzer Y; Wininger S; Resnick N; Cohen M; Kapulnik Y; Koltai H
    Plant Physiol; 2012 Nov; 160(3):1329-41. PubMed ID: 22968830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance.
    Tanaka M; Takei K; Kojima M; Sakakibara H; Mori H
    Plant J; 2006 Mar; 45(6):1028-36. PubMed ID: 16507092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of OsWNK9 in Arabidopsis conferred tolerance to salt and drought stress.
    Manuka R; Saddhe AA; Kumar K
    Plant Sci; 2018 May; 270():58-71. PubMed ID: 29576087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auxin flow-mediated competition between axillary buds to restore apical dominance.
    Balla J; Medveďová Z; Kalousek P; Matiješčuková N; Friml J; Reinöhl V; Procházka S
    Sci Rep; 2016 Nov; 6():35955. PubMed ID: 27824063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abscisic Acid Is a General Negative Regulator of Arabidopsis Axillary Bud Growth.
    Yao C; Finlayson SA
    Plant Physiol; 2015 Sep; 169(1):611-26. PubMed ID: 26149576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea.
    Sorefan K; Booker J; Haurogné K; Goussot M; Bainbridge K; Foo E; Chatfield S; Ward S; Beveridge C; Rameau C; Leyser O
    Genes Dev; 2003 Jun; 17(12):1469-74. PubMed ID: 12815068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PHO1 expression in guard cells mediates the stomatal response to abscisic acid in Arabidopsis.
    Zimmerli C; Ribot C; Vavasseur A; Bauer H; Hedrich R; Poirier Y
    Plant J; 2012 Oct; 72(2):199-211. PubMed ID: 22612335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.