These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 26883226)
1. Magnaporthe oryzae effectors MoHEG13 and MoHEG16 interfere with host infection and MoHEG13 counteracts cell death caused by Magnaporthe-NLPs in tobacco. Mogga V; Delventhal R; Weidenbach D; Langer S; Bertram PM; Andresen K; Thines E; Kroj T; Schaffrath U Plant Cell Rep; 2016 May; 35(5):1169-85. PubMed ID: 26883226 [TBL] [Abstract][Full Text] [Related]
2. Identification and characterization of suppressors of plant cell death (SPD) effectors from Magnaporthe oryzae. Sharpee W; Oh Y; Yi M; Franck W; Eyre A; Okagaki LH; Valent B; Dean RA Mol Plant Pathol; 2017 Aug; 18(6):850-863. PubMed ID: 27301772 [TBL] [Abstract][Full Text] [Related]
3. RNA-Seq of in planta-expressed Magnaporthe oryzae genes identifies MoSVP as a highly expressed gene required for pathogenicity at the initial stage of infection. Shimizu M; Nakano Y; Hirabuchi A; Yoshino K; Kobayashi M; Yamamoto K; Terauchi R; Saitoh H Mol Plant Pathol; 2019 Dec; 20(12):1682-1695. PubMed ID: 31560822 [TBL] [Abstract][Full Text] [Related]
4. Large-scale gene disruption in Magnaporthe oryzae identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens. Saitoh H; Fujisawa S; Mitsuoka C; Ito A; Hirabuchi A; Ikeda K; Irieda H; Yoshino K; Yoshida K; Matsumura H; Tosa Y; Win J; Kamoun S; Takano Y; Terauchi R PLoS Pathog; 2012; 8(5):e1002711. PubMed ID: 22589729 [TBL] [Abstract][Full Text] [Related]
5. Barley Rom1 antagonizes Rar1 function in Magnaporthe oryzae-infected leaves by enhancing epidermal and diminishing mesophyll defence. Zellerhoff N; Jansen M; Schaffrath U New Phytol; 2008; 180(3):702-710. PubMed ID: 18713313 [TBL] [Abstract][Full Text] [Related]
6. Erratum to: Magnaporthe oryzae effectors MoHEG13 and MoHEG16 interfere with host infection and MoHEG13 counteracts cell death caused by Magnaporthe-NLPs in tobacco. Mogga V; Delventhal R; Weidenbach D; Langer S; Bertram PM; Andresen K; Thines E; Kroj T; Schaffrath U Plant Cell Rep; 2016 May; 35(5):1187. PubMed ID: 27015681 [No Abstract] [Full Text] [Related]
7. Identification and characterization of in planta-expressed secreted effector proteins from Magnaporthe oryzae that induce cell death in rice. Chen S; Songkumarn P; Venu RC; Gowda M; Bellizzi M; Hu J; Liu W; Ebbole D; Meyers B; Mitchell T; Wang GL Mol Plant Microbe Interact; 2013 Feb; 26(2):191-202. PubMed ID: 23035914 [TBL] [Abstract][Full Text] [Related]
8. Deployment of the Burkholderia glumae type III secretion system as an efficient tool for translocating pathogen effectors to monocot cells. Sharma S; Sharma S; Hirabuchi A; Yoshida K; Fujisaki K; Ito A; Uemura A; Terauchi R; Kamoun S; Sohn KH; Jones JD; Saitoh H Plant J; 2013 May; 74(4):701-12. PubMed ID: 23451734 [TBL] [Abstract][Full Text] [Related]
9. Magnaporthe oryzae-Secreted Protein MSP1 Induces Cell Death and Elicits Defense Responses in Rice. Wang Y; Wu J; Kim SG; Tsuda K; Gupta R; Park SY; Kim ST; Kang KY Mol Plant Microbe Interact; 2016 Apr; 29(4):299-312. PubMed ID: 26780420 [TBL] [Abstract][Full Text] [Related]
10. Nonhost resistance of barley is successfully manifested against Magnaporthe grisea and a closely related Pennisetum-infecting lineage but is overcome by Magnaporthe oryzae. Zellerhoff N; Jarosch B; Groenewald JZ; Crous PW; Schaffrath U Mol Plant Microbe Interact; 2006 Sep; 19(9):1014-22. PubMed ID: 16941905 [TBL] [Abstract][Full Text] [Related]
11. HvCEBiP, a gene homologous to rice chitin receptor CEBiP, contributes to basal resistance of barley to Magnaporthe oryzae. Tanaka S; Ichikawa A; Yamada K; Tsuji G; Nishiuchi T; Mori M; Koga H; Nishizawa Y; O'Connell R; Kubo Y BMC Plant Biol; 2010 Dec; 10():288. PubMed ID: 21190588 [TBL] [Abstract][Full Text] [Related]
12. Abscisic acid negatively interferes with basal defence of barley against Magnaporthe oryzae. Ulferts S; Delventhal R; Splivallo R; Karlovsky P; Schaffrath U BMC Plant Biol; 2015 Jan; 15():7. PubMed ID: 25604965 [TBL] [Abstract][Full Text] [Related]
13. A comparative analysis of nonhost resistance across the two Triticeae crop species wheat and barley. Delventhal R; Rajaraman J; Stefanato FL; Rehman S; Aghnoum R; McGrann GRD; Bolger M; Usadel B; Hedley PE; Boyd L; Niks RE; Schweizer P; Schaffrath U BMC Plant Biol; 2017 Dec; 17(1):232. PubMed ID: 29202692 [TBL] [Abstract][Full Text] [Related]
14. Alternative cell death mechanisms determine epidermal resistance in incompatible barley-Ustilago interactions. Hof A; Zechmann B; Schwammbach D; Hückelhoven R; Doehlemann G Mol Plant Microbe Interact; 2014 May; 27(5):403-14. PubMed ID: 24329174 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of a novel biotrophy-specific Colletotrichum truncatum effector, CtNUDIX, in hemibiotrophic fungal phytopathogens causes incompatibility with their host plants. Bhadauria V; Banniza S; Vandenberg A; Selvaraj G; Wei Y Eukaryot Cell; 2013 Jan; 12(1):2-11. PubMed ID: 22962277 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome-wide association study identifies putative elicitors/suppressor of Puccinia graminis f. sp. tritici that modulate barley rpg4-mediated stem rust resistance. Sharma Poudel R; Richards J; Shrestha S; Solanki S; Brueggeman R BMC Genomics; 2019 Dec; 20(1):985. PubMed ID: 31842749 [TBL] [Abstract][Full Text] [Related]
17. Global genome and transcriptome analyses of Magnaporthe oryzae epidemic isolate 98-06 uncover novel effectors and pathogenicity-related genes, revealing gene gain and lose dynamics in genome evolution. Dong Y; Li Y; Zhao M; Jing M; Liu X; Liu M; Guo X; Zhang X; Chen Y; Liu Y; Liu Y; Ye W; Zhang H; Wang Y; Zheng X; Wang P; Zhang Z PLoS Pathog; 2015 Apr; 11(4):e1004801. PubMed ID: 25837042 [TBL] [Abstract][Full Text] [Related]
18. The role of a cytosolic superoxide dismutase in barley-pathogen interactions. Lightfoot DJ; Mcgrann GR; Able AJ Mol Plant Pathol; 2017 Apr; 18(3):323-335. PubMed ID: 26992055 [TBL] [Abstract][Full Text] [Related]
19. Plant Peroxisome-Targeting Effector MoPtep1 Is Required for the Virulence of Ning N; Xie X; Yu H; Mei J; Li Q; Zuo S; Wu H; Liu W; Li Z Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269662 [TBL] [Abstract][Full Text] [Related]
20. Visualizing the Movement of Magnaporthe oryzae Effector Proteins in Rice Cells During Infection. Jones K; Khang CH Methods Mol Biol; 2018; 1848():103-117. PubMed ID: 30182232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]