These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Cell aggregation is negatively regulated by N-acylhomoserine lactone-mediated quorum sensing in Pantoea ananatis SK-1. Morohoshi T; Ogata Y; Ikeda T J Biosci Bioeng; 2011 Dec; 112(6):566-9. PubMed ID: 21900041 [TBL] [Abstract][Full Text] [Related]
5. Exopolysaccharide production is influenced by sugars, N-acylhomoserine lactone, and transcriptional regulators RcsA and RcsB, but does not affect pathogenicity in the plant pathogen Pantoea ananatis. Morohoshi T; Oseki K; Ikeda T Biosci Biotechnol Biochem; 2011; 75(5):997-9. PubMed ID: 21597171 [TBL] [Abstract][Full Text] [Related]
6. Biochemical characterization of serine acetyltransferase and cysteine desulfhydrase from Leishmania major. Marciano D; Santana M; Mantilla BS; Silber AM; Marino-Buslje C; Nowicki C Mol Biochem Parasitol; 2010 Oct; 173(2):170-4. PubMed ID: 20541568 [TBL] [Abstract][Full Text] [Related]
7. Application of inorganic phosphate limitation to efficient isoprene production in Pantoea ananatis. Nitta N; Tajima Y; Katashkina JI; Yamamoto Y; Onuki A; Rachi H; Kazieva E; Nishio Y J Appl Microbiol; 2020 Mar; 128(3):763-774. PubMed ID: 31738465 [TBL] [Abstract][Full Text] [Related]
8. Identification and characterization of a novel bacterial pyranose 2-oxidase from the lignocellulolytic bacterium Pantoea ananatis Sd-1. Zhang K; Huang M; Ma J; Liu Z; Zeng J; Liu X; Xu T; Wang X; Liu Y; Bu Z; Zhu Y Biotechnol Lett; 2018 May; 40(5):871-880. PubMed ID: 29605940 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the inaA gene and expression of ice nucleation phenotype in Pantoea ananatis isolates from Maize White Spot disease. Miller AM; Figueiredo JE; Linde GA; Colauto NB; Paccola-Meirelles LD Genet Mol Res; 2016 Mar; 15(1):15017863. PubMed ID: 26985943 [TBL] [Abstract][Full Text] [Related]
10. Indole enhances the survival of Pantoea ananatis YJ76 in face of starvation conditions. Zheng J; Yu J; Jia M; Zheng L; Feng Y J Basic Microbiol; 2017 Jul; 57(7):633-639. PubMed ID: 28485502 [TBL] [Abstract][Full Text] [Related]
11. Functional characterization of enzymes involved in cysteine biosynthesis and H(2)S production in Trypanosoma cruzi. Marciano D; Santana M; Nowicki C Mol Biochem Parasitol; 2012 Oct; 185(2):114-20. PubMed ID: 22898136 [TBL] [Abstract][Full Text] [Related]
12. ydjN encodes an S-sulfocysteine transporter required by Escherichia coli for growth on S-sulfocysteine as a sulfur source. Yamazaki S; Takei K; Nonaka G FEMS Microbiol Lett; 2016 Sep; 363(17):. PubMed ID: 27481704 [TBL] [Abstract][Full Text] [Related]
13. The HrpX/HrpY two-component system activates hrpS expression, the first step in the regulatory cascade controlling the Hrp regulon in Pantoea stewartii subsp. stewartii. Merighi M; Majerczak DR; Stover EH; Coplin DL Mol Plant Microbe Interact; 2003 Mar; 16(3):238-48. PubMed ID: 12650455 [TBL] [Abstract][Full Text] [Related]
15. Two pathways for cysteine biosynthesis in Leishmania major. Williams RA; Westrop GD; Coombs GH Biochem J; 2009 May; 420(3):451-62. PubMed ID: 19296828 [TBL] [Abstract][Full Text] [Related]
16. Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Yoon SH; Kim JE; Lee SH; Park HM; Choi MS; Kim JY; Lee SH; Shin YC; Keasling JD; Kim SW Appl Microbiol Biotechnol; 2007 Feb; 74(1):131-9. PubMed ID: 17115209 [TBL] [Abstract][Full Text] [Related]
17. The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules. Rückert C; Milse J; Albersmeier A; Koch DJ; Pühler A; Kalinowski J BMC Genomics; 2008 Oct; 9():483. PubMed ID: 18854009 [TBL] [Abstract][Full Text] [Related]
18. Impact of sulfur starvation on cysteine biosynthesis in T-DNA mutants deficient for compartment-specific serine-acetyltransferase. Krueger S; Donath A; Lopez-Martin MC; Hoefgen R; Gotor C; Hesse H Amino Acids; 2010 Oct; 39(4):1029-42. PubMed ID: 20379751 [TBL] [Abstract][Full Text] [Related]
19. Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae: updating of the sulfur metabolism pathway. Cherest H; Surdin-Kerjan Y Genetics; 1992 Jan; 130(1):51-8. PubMed ID: 1732168 [TBL] [Abstract][Full Text] [Related]
20. Center Rot of Onion (Allium cepa) Caused by Pantoea ananatis Requires pepM, a Predicted Phosphonate-Related Gene. Asselin JAE; Bonasera JM; Beer SV Mol Plant Microbe Interact; 2018 Dec; 31(12):1291-1300. PubMed ID: 29953334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]