These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 2688406)

  • 41. Biocompatibility of different hemodialysis membranes: activation of complement and leukopenia.
    Wegmüller E; Montandon A; Nydegger U; Descoeudres C
    Int J Artif Organs; 1986 Mar; 9(2):85-92. PubMed ID: 3699914
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improved preservation of residual renal function in chronic hemodialysis patients using polysulfone dialyzers.
    McCarthy JT; Jenson BM; Squillace DP; Williams AW
    Am J Kidney Dis; 1997 Apr; 29(4):576-83. PubMed ID: 9100048
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phagocyte metabolic activity during hemodialysis with different dialyzers not affecting the number of circulating phagocytes.
    Vanholder R; Van Landschoot N; Waterloos MA; Delanghe J; Van Maele G; Ringoir S
    Int J Artif Organs; 1992 Feb; 15(2):89-92. PubMed ID: 1555881
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Beta 2-microglobulin kinetics during haemodialysis and haemofiltration.
    Flöge J; Granolleras C; Bingel M; Deschodt G; Branger B; Oules R; Koch KM; Shaldon S
    Nephrol Dial Transplant; 1987; 1(4):223-8. PubMed ID: 3110678
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The next generation of dialysis membranes--barriers or pathways?
    Streicher E; Schneider H
    Contrib Nephrol; 1985; 44():127-36. PubMed ID: 3987283
    [No Abstract]   [Full Text] [Related]  

  • 46. Ofloxacin clearance during hemodialysis: a comparison of polysulfone and cellulose acetate hemodialyzers.
    Thalhammer F; Kletzmayr J; El Menyawi I; Kovarik J; Rosenkranz AR; Traunmüller F; Hörl WH; Burgmann H
    Am J Kidney Dis; 1998 Oct; 32(4):642-5. PubMed ID: 9774127
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Difference in beta 2-microglobulin removal between cellulosic and synthetic polymer membrane dialyzers.
    Mineshima M; Hoshino T; Era K; Kitano Y; Suzuki T; Sanaka T; Teraoka S; Agishi T; Ota K
    ASAIO Trans; 1990; 36(3):M643-6. PubMed ID: 2252773
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of dialysis flux and membrane material on dyslipidaemia and inflammation in haemodialysis patients.
    Wanner C; Bahner U; Mattern R; Lang D; Passlick-Deetjen J
    Nephrol Dial Transplant; 2004 Oct; 19(10):2570-5. PubMed ID: 15280524
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of changing from a cellulose acetate to a polysulphone dialysis membrane on protein oxidation and inflammation markers.
    Walker RJ; Sutherland WH; De Jong SA
    Clin Nephrol; 2004 Mar; 61(3):198-206. PubMed ID: 15077871
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Influence of cuprophane membrane surface dialyzers on beta2-microglobulin serum concentration in patients during hemodialysis].
    Szepietowski T; el-Hayek A
    Polim Med; 1993; 23(3-4):43-54. PubMed ID: 8029157
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of cellulose, modified cellulose and synthetic membranes in the haemodialysis of patients with end-stage renal disease.
    MacLeod A; Daly C; Khan I; Vale L; Campbell M; Wallace S; Cody J; Donaldson C; Grant A
    Cochrane Database Syst Rev; 2001; (3):CD003234. PubMed ID: 11687058
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Clinical experience and model analysis on beta-2-microglobulin kinetics in high-flux hemodialysis.
    Lian JD; Cheng CH; Chang YL; Hsiong CH; Lee CJ
    Artif Organs; 1993 Sep; 17(9):758-63. PubMed ID: 8240067
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Factors affecting beta 2-microglobulin plasma concentration during hemodialysis.
    Martin-Malo A; Mallol J; Castillo D; Barrio V; Burdiel LG; Perez R; Aljama P
    Int J Artif Organs; 1989 Aug; 12(8):509-14. PubMed ID: 2681000
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Maintaining blood compartment volume in dialyzers reprocessed with peracetic acid maintains Kt/V but not beta2-microglobulin removal.
    Ouseph R; Smith BP; Ward RA
    Am J Kidney Dis; 1997 Oct; 30(4):501-6. PubMed ID: 9328364
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Beta-2-microglobulin adsorption and release in-vitro: influence of membrane material, osmolality and heparin.
    Klinke B; Röckel A; Perschel W; Abdelhamid S; Fiegel P; Walb D; Meairs S
    Int J Artif Organs; 1988 Sep; 11(5):355-60. PubMed ID: 3056863
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of dialysis procedure, membrane surface and membrane material on iopromide elimination in patients with reduced kidney function.
    Matzkies FK; Reinecke H; Tombach B; Kosch M; Hegger K; Milius M; Hohage H; Kisters K; Kerber S; Schaefer RM
    Am J Nephrol; 2000; 20(4):300-4. PubMed ID: 10970983
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of a reduced inner diameter of hollow fibers in hemodialyzers.
    Ronco C; Brendolan A; Lupi A; Metry G; Levin NW
    Kidney Int; 2000 Aug; 58(2):809-17. PubMed ID: 10916106
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Endotoxin rejection by ultrafiltration through high-flux, hollow fiber filters.
    Yamamoto C; Kim ST
    J Biomed Mater Res; 1996 Nov; 32(3):467-71. PubMed ID: 8897153
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biocompatibility study on cuprophane and polysulphone dialysers.
    Taraba I; Polner K; Makó J
    Nephrol Dial Transplant; 1991; 6 Suppl 3():22-5. PubMed ID: 1775261
    [No Abstract]   [Full Text] [Related]  

  • 60. Mass transfer mechanisms in high-performance membrane dialyzers.
    Yamashita AC
    Contrib Nephrol; 2011; 173():95-102. PubMed ID: 21865781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.