These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26884129)

  • 1. Contribution of Dielectric Screening to the Total Capacitance of Few-Layer Graphene Electrodes.
    Zhan C; Jiang DE
    J Phys Chem Lett; 2016 Mar; 7(5):789-94. PubMed ID: 26884129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric double-layer capacitance between an ionic liquid and few-layer graphene.
    Uesugi E; Goto H; Eguchi R; Fujiwara A; Kubozono Y
    Sci Rep; 2013; 3():1595. PubMed ID: 23549208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative contributions of quantum and double layer capacitance to the supercapacitor performance of carbon nanotubes in an ionic liquid.
    Pak AJ; Paek E; Hwang GS
    Phys Chem Chem Phys; 2013 Dec; 15(45):19741-7. PubMed ID: 24141286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation Study of Electric Double-Layer Capacitance of Ordered Carbon Electrodes.
    Nigam R; Kar KK
    Langmuir; 2022 Oct; 38(40):12235-12247. PubMed ID: 36164778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the influence of polarization effects in predicting the interfacial structure and capacitance of graphene-like electrodes in ionic liquids.
    Paek E; Pak AJ; Hwang GS
    J Chem Phys; 2015 Jan; 142(2):024701. PubMed ID: 25591371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte.
    Vatamanu J; Borodin O; Smith GD
    Phys Chem Chem Phys; 2010 Jan; 12(1):170-82. PubMed ID: 20024457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origins and Implications of Interfacial Capacitance Enhancements in C
    Zhan C; Pham TA; Cerón MR; Campbell PG; Vedharathinam V; Otani M; Jiang DE; Biener J; Wood BC; Biener M
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36860-36865. PubMed ID: 30296045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Origin of Improved Electrical Double-Layer Capacitance by Inclusion of Topological Defects and Dopants in Graphene for Supercapacitors.
    Chen J; Han Y; Kong X; Deng X; Park HJ; Guo Y; Jin S; Qi Z; Lee Z; Qiao Z; Ruoff RS; Ji H
    Angew Chem Int Ed Engl; 2016 Oct; 55(44):13822-13827. PubMed ID: 27701817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing graphene capacitance by nitrogen: effects of doping configuration and concentration.
    Zhan C; Zhang Y; Cummings PT; Jiang DE
    Phys Chem Chem Phys; 2016 Feb; 18(6):4668-74. PubMed ID: 26794824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capacitance of carbon-based electrical double-layer capacitors.
    Ji H; Zhao X; Qiao Z; Jung J; Zhu Y; Lu Y; Zhang LL; MacDonald AH; Ruoff RS
    Nat Commun; 2014; 5():3317. PubMed ID: 24557361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring graphene-based electrodes from semiconducting to metallic to increase the energy density in supercapacitors.
    Vatamanu J; Ni X; Liu F; Bedrov D
    Nanotechnology; 2015 Nov; 26(46):464001. PubMed ID: 26511198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishing the Relationship between Quantum Capacitance and Softness of N-Doped Graphene/Electrolyte Interfaces within the Density Functional Theory Grand Canonical Kohn-Sham Formalism.
    Ochoa-Calle A; Guevara-García A; Vazquez-Arenas J; González I; Galván M
    J Phys Chem A; 2020 Jan; 124(3):573-581. PubMed ID: 31876420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Insights into Materials and Interfaces for Capacitive Energy Storage.
    Zhan C; Lian C; Zhang Y; Thompson MW; Xie Y; Wu J; Kent PRC; Cummings PT; Jiang DE; Wesolowski DJ
    Adv Sci (Weinh); 2017 Jul; 4(7):1700059. PubMed ID: 28725531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of electrode polarization capacitance in low-frequency impedance spectroscopy by using mesh electrodes.
    Padmaraj D; Miller JH; Wosik J; Zagozdzon-Wosik W
    Biosens Bioelectron; 2011 Nov; 29(1):13-7. PubMed ID: 21872464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the charging dynamics of an ionic liquid electric double layer capacitor via molecular dynamics simulations.
    Noh C; Jung Y
    Phys Chem Chem Phys; 2019 Mar; 21(13):6790-6800. PubMed ID: 30735216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring doped or vacancy-modified graphene-based electrodes for applications in asymmetric supercapacitors.
    da Silva DAC; Paulista Neto AJ; Pascon AM; Fileti EE; Fonseca LRC; Zanin HG
    Phys Chem Chem Phys; 2020 Feb; 22(7):3906-3913. PubMed ID: 32016251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalization of the Gouy-Chapman-Stern model of an electric double layer for a morphologically complex electrode: deterministic and stochastic morphologies.
    Kant R; Singh MB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052303. PubMed ID: 24329260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relation between the ion size and pore size for an electric double-layer capacitor.
    Largeot C; Portet C; Chmiola J; Taberna PL; Gogotsi Y; Simon P
    J Am Chem Soc; 2008 Mar; 130(9):2730-1. PubMed ID: 18257568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of molecular dynamics simulation methods for ionic liquid electric double layers.
    Haskins JB; Lawson JW
    J Chem Phys; 2016 May; 144(18):184707. PubMed ID: 27179500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusual effects of solvent polarity on capacitance for organic electrolytes in a nanoporous electrode.
    Jiang DE; Wu J
    Nanoscale; 2014 May; 6(10):5545-50. PubMed ID: 24733527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.