BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 26884333)

  • 1. Identification of a Substrate Recognition Domain in the Replication Stress Response Protein Zinc Finger Ran-binding Domain-containing Protein 3 (ZRANB3).
    Badu-Nkansah A; Mason AC; Eichman BF; Cortez D
    J Biol Chem; 2016 Apr; 291(15):8251-7. PubMed ID: 26884333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functions of SMARCAL1, ZRANB3, and HLTF in maintaining genome stability.
    Poole LA; Cortez D
    Crit Rev Biochem Mol Biol; 2017 Dec; 52(6):696-714. PubMed ID: 28954549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A structure-specific nucleic acid-binding domain conserved among DNA repair proteins.
    Mason AC; Rambo RP; Greer B; Pritchett M; Tainer JA; Cortez D; Eichman BF
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7618-23. PubMed ID: 24821763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The HIRAN domain of helicase-like transcription factor positions the DNA translocase motor to drive efficient DNA fork regression.
    Chavez DA; Greer BH; Eichman BF
    J Biol Chem; 2018 Jun; 293(22):8484-8494. PubMed ID: 29643183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SMARCAL1 maintains telomere integrity during DNA replication.
    Poole LA; Zhao R; Glick GG; Lovejoy CA; Eischen CM; Cortez D
    Proc Natl Acad Sci U S A; 2015 Dec; 112(48):14864-9. PubMed ID: 26578802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease.
    Joseph SA; Taglialatela A; Leuzzi G; Huang JW; Cuella-Martin R; Ciccia A
    DNA Repair (Amst); 2020 Nov; 95():102943. PubMed ID: 32971328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate-selective repair and restart of replication forks by DNA translocases.
    Bétous R; Couch FB; Mason AC; Eichman BF; Manosas M; Cortez D
    Cell Rep; 2013 Jun; 3(6):1958-69. PubMed ID: 23746452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strand annealing and motor driven activities of SMARCAL1 and ZRANB3 are stimulated by RAD51 and the paralog complex.
    Halder S; Ranjha L; Taglialatela A; Ciccia A; Cejka P
    Nucleic Acids Res; 2022 Aug; 50(14):8008-8022. PubMed ID: 35801922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into the function of ZRANB3 in replication stress response.
    Sebesta M; Cooper CDO; Ariza A; Carnie CJ; Ahel D
    Nat Commun; 2017 Jun; 8():15847. PubMed ID: 28621305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response.
    Weston R; Peeters H; Ahel D
    Genes Dev; 2012 Jul; 26(14):1558-72. PubMed ID: 22759634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restoration of Replication Fork Stability in BRCA1- and BRCA2-Deficient Cells by Inactivation of SNF2-Family Fork Remodelers.
    Taglialatela A; Alvarez S; Leuzzi G; Sannino V; Ranjha L; Huang JW; Madubata C; Anand R; Levy B; Rabadan R; Cejka P; Costanzo V; Ciccia A
    Mol Cell; 2017 Oct; 68(2):414-430.e8. PubMed ID: 29053959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smarcal1 and Zranb3 Protect Replication Forks from Myc-Induced DNA Replication Stress.
    Puccetti MV; Adams CM; Kushinsky S; Eischen CM
    Cancer Res; 2019 Apr; 79(7):1612-1623. PubMed ID: 30610086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of a C-terminal auto-inhibitory domain increases SMARCAL1 activity.
    Carroll C; Bansbach CE; Zhao R; Jung SY; Qin J; Cortez D
    Nucleic Acids Res; 2014 Jan; 42(2):918-25. PubMed ID: 24150942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress.
    Ciccia A; Nimonkar AV; Hu Y; Hajdu I; Achar YJ; Izhar L; Petit SA; Adamson B; Yoon JC; Kowalczykowski SC; Livingston DM; Haracska L; Elledge SJ
    Mol Cell; 2012 Aug; 47(3):396-409. PubMed ID: 22704558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-affinity DNA-binding domains of replication protein A (RPA) direct SMARCAL1-dependent replication fork remodeling.
    Bhat KP; Bétous R; Cortez D
    J Biol Chem; 2015 Feb; 290(7):4110-7. PubMed ID: 25552480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Movement of the RecG Motor Domain upon DNA Binding Is Required for Efficient Fork Reversal.
    Warren GM; Stein RA; Mchaourab HS; Eichman BF
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30301235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression.
    Hampp S; Kiessling T; Buechle K; Mansilla SF; Thomale J; Rall M; Ahn J; Pospiech H; Gottifredi V; Wiesmüller L
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):E4311-9. PubMed ID: 27407148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RFWD3 promotes ZRANB3 recruitment to regulate the remodeling of stalled replication forks.
    Moore CE; Yalcindag SE; Czeladko H; Ravindranathan R; Wijesekara Hanthi Y; Levy JC; Sannino V; Schindler D; Ciccia A; Costanzo V; Elia AEH
    J Cell Biol; 2023 May; 222(5):. PubMed ID: 37036693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperation of the N-terminal Helicase and C-terminal endonuclease activities of Archaeal Hef protein in processing stalled replication forks.
    Komori K; Hidaka M; Horiuchi T; Fujikane R; Shinagawa H; Ishino Y
    J Biol Chem; 2004 Dec; 279(51):53175-85. PubMed ID: 15485882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ZATT-TOP2A-PICH Axis Drives Extensive Replication Fork Reversal to Promote Genome Stability.
    Tian T; Bu M; Chen X; Ding L; Yang Y; Han J; Feng XH; Xu P; Liu T; Ying S; Lei Y; Li Q; Huang J
    Mol Cell; 2021 Jan; 81(1):198-211.e6. PubMed ID: 33296677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.