These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 26884480)
81. Stability of entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens, during in vitro culture. Wang Y; Bilgrami AL; Shapiro-Ilan D; Gaugler R J Ind Microbiol Biotechnol; 2007 Jan; 34(1):73-81. PubMed ID: 16941119 [TBL] [Abstract][Full Text] [Related]
82. Effects of the entomopathogenic nematode, Heterorhabditis bacteriophora HP 88 and azadirachtin on the immune defence response and prophenoloxidase of Parasarcophaga surcoufi larvae (Diptera: Sarcophagidae). Ayaad TH; Dorrah MA; Shaurub el-SH; el-Sadawy HA J Egypt Soc Parasitol; 2001 Apr; 31(1):295-325. PubMed ID: 12557951 [TBL] [Abstract][Full Text] [Related]
83. The first record of entomopathogenic nematodes (Rhabiditiae: Steinernematidae and Heterorhabditidae) in natural ecosystems in Lebanon: A biogeographic approach in the Mediterranean region. Noujeim E; Khater C; Pages S; Ogier JC; Tailliez P; Hamze M; Thaler O J Invertebr Pathol; 2011 May; 107(1):82-5. PubMed ID: 21241704 [TBL] [Abstract][Full Text] [Related]
84. An Entomopathogenic Nematode Extends Its Niche by Associating with Different Symbionts. Maher AMD; Asaiyah MAM; Brophy C; Griffin CT Microb Ecol; 2017 Jan; 73(1):211-223. PubMed ID: 27543560 [TBL] [Abstract][Full Text] [Related]
85. Influence of the aeration rate on the yields of the biocontrol nematode Heterorhabditis megidis in monoxenic liquid cultures. Strauch O; Ehlers RU Appl Microbiol Biotechnol; 2000 Jul; 54(1):9-13. PubMed ID: 10951998 [TBL] [Abstract][Full Text] [Related]
86. The Regulation of Secondary Metabolism and Mutualism in the Insect Pathogenic Bacterium Photorhabdus luminescens. Joyce SA; Lango L; Clarke DJ Adv Appl Microbiol; 2011; 76():1-25. PubMed ID: 21924970 [TBL] [Abstract][Full Text] [Related]
87. A lover and a fighter: the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora. Bai X; Adams BJ; Ciche TA; Clifton S; Gaugler R; Kim KS; Spieth J; Sternberg PW; Wilson RK; Grewal PS PLoS One; 2013; 8(7):e69618. PubMed ID: 23874975 [TBL] [Abstract][Full Text] [Related]
88. For the insect pathogen Photorhabdus luminescens, which end of a nematode is out? Ciche TA; Ensign JC Appl Environ Microbiol; 2003 Apr; 69(4):1890-7. PubMed ID: 12676661 [TBL] [Abstract][Full Text] [Related]
90. Changes in Caenorhabditis elegans gene expression following exposure to Photorhabdus luminescens strain TT01. Hoinville ME; Wollenberg AC Dev Comp Immunol; 2018 May; 82():165-176. PubMed ID: 29203330 [TBL] [Abstract][Full Text] [Related]
91. Xenorhabdus nematophilus as a model for host-bacterium interactions: rpoS is necessary for mutualism with nematodes. Vivas EI; Goodrich-Blair H J Bacteriol; 2001 Aug; 183(16):4687-93. PubMed ID: 11466270 [TBL] [Abstract][Full Text] [Related]
92. A hexA homologue from Photorhabdus regulates pathogenicity, symbiosis and phenotypic variation. Joyce SA; Clarke DJ Mol Microbiol; 2003 Mar; 47(5):1445-57. PubMed ID: 12603747 [TBL] [Abstract][Full Text] [Related]
93. Kenney E; Hawdon JM; O'Halloran D; Eleftherianos I Front Immunol; 2019; 10():2372. PubMed ID: 31636642 [TBL] [Abstract][Full Text] [Related]
94. The Biocontrol Agent and Insect Pathogen Photorhabdus luminescens Interacts with Plant Roots. Regaiolo A; Dominelli N; Andresen K; Heermann R Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32591378 [TBL] [Abstract][Full Text] [Related]
95. Larvicidal activity of Photorhabdus and Xenorhabdus bacteria isolated from insect parasitic nematodes against Aedes aegypti and Aedes albopictus. Subkrasae C; Ardpairin J; Dumidae A; Janthu P; Muangpat P; Polseela R; Tandhavanant S; Thanwisai A; Vitta A Acta Trop; 2022 Nov; 235():106668. PubMed ID: 36030882 [TBL] [Abstract][Full Text] [Related]
96. Silver nanoparticles enhance the larvicidal toxicity of Photorhabdus and Xenorhabdus bacterial toxins: an approach to control the filarial vector, Culex pipiens. El-Sadawy HA; El Namaky AH; Hafez EE; Baiome BA; Ahmed AM; Ashry HM; Ayaad TH Trop Biomed; 2018 Jun; 35(2):392-407. PubMed ID: 33601813 [TBL] [Abstract][Full Text] [Related]
97. The regulation of pathogenicity and mutualism in Photorhabdus. Joyce SA; Watson RJ; Clarke DJ Curr Opin Microbiol; 2006 Apr; 9(2):127-32. PubMed ID: 16480919 [TBL] [Abstract][Full Text] [Related]
98. Insect cellular and chemical limitations to pathogen development: the Colorado potato beetle, the nematode Heterorhabditis marelatus, and its symbiotic bacteria. Armer CA; Rao S; Berry RE J Invertebr Pathol; 2004; 87(2-3):114-22. PubMed ID: 15579320 [TBL] [Abstract][Full Text] [Related]
99. The expression of stlA in Photorhabdus luminescens is controlled by nutrient limitation. Lango-Scholey L; Brachmann AO; Bode HB; Clarke DJ PLoS One; 2013; 8(11):e82152. PubMed ID: 24278476 [TBL] [Abstract][Full Text] [Related]
100. Occurrence and regulation of the ferric citrate transport system in Escherichia coli B, Klebsiella pneumoniae, Enterobacter aerogenes, and Photorhabdus luminescens. Mahren S; Schnell H; Braun V Arch Microbiol; 2005 Nov; 184(3):175-86. PubMed ID: 16193283 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]