These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Timing and duration of light exposure during conidia development determine tolerance to ultraviolet radiation. Brancini GTP; Bachmann L; Braga GÚL FEMS Microbiol Lett; 2021 Oct; 368(19):. PubMed ID: 34665247 [TBL] [Abstract][Full Text] [Related]
3. Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Rangel DE; Anderson AJ; Roberts DW Mycol Res; 2008 Nov; 112(Pt 11):1362-72. PubMed ID: 18938068 [TBL] [Abstract][Full Text] [Related]
4. Riboflavin induces Metarhizium spp. to produce conidia with elevated tolerance to UV-B, and upregulates photolyases, laccases and polyketide synthases genes. Pereira-Junior RA; Huarte-Bonnet C; Paixão FRS; Roberts DW; Luz C; Pedrini N; Fernandes ÉKK J Appl Microbiol; 2018 Jul; 125(1):159-171. PubMed ID: 29473986 [TBL] [Abstract][Full Text] [Related]
6. Visible light during mycelial growth and conidiation of Metarhizium robertsii produces conidia with increased stress tolerance. Rangel DE; Fernandes EK; Braga GU; Roberts DW FEMS Microbiol Lett; 2011 Feb; 315(2):81-6. PubMed ID: 21204917 [TBL] [Abstract][Full Text] [Related]
7. Possible source of the high UV-B and heat tolerance of Metarhizium acridum (isolate ARSEF 324). Rangel DEN; Roberts DW J Invertebr Pathol; 2018 Sep; 157():32-35. PubMed ID: 30017952 [TBL] [Abstract][Full Text] [Related]
8. Responses of entomopathogenic fungi to the mutagen 4-nitroquinoline 1-oxide. Araújo CAS; Dias LP; Ferreira PC; Mittmann J; Pupin B; Brancini GTP; Braga GÚL; Rangel DEN Fungal Biol; 2018 Jun; 122(6):621-628. PubMed ID: 29801807 [TBL] [Abstract][Full Text] [Related]
9. Culture of Metarhizium robertsii on salicylic-acid supplemented medium induces increased conidial thermotolerance. Rangel DE; Fernandes ÉK; Anderson AJ; Roberts DW Fungal Biol; 2012 Mar; 116(3):438-42. PubMed ID: 22385625 [TBL] [Abstract][Full Text] [Related]
10. Conidiation under illumination enhances conidial tolerance of insect-pathogenic fungi to environmental stresses. Dias LP; Souza RKF; Pupin B; Rangel DEN Fungal Biol; 2021 Nov; 125(11):891-904. PubMed ID: 34649676 [TBL] [Abstract][Full Text] [Related]
11. Outcome of blue, green, red, and white light on Metarhizium robertsii during mycelial growth on conidial stress tolerance and gene expression. Dias LP; Pedrini N; Braga GUL; Ferreira PC; Pupin B; Araújo CAS; Corrochano LM; Rangel DEN Fungal Biol; 2020 May; 124(5):263-272. PubMed ID: 32389288 [TBL] [Abstract][Full Text] [Related]
12. An ENA ATPase, MaENA1, of Metarhizium acridum influences the Na(+)-, thermo- and UV-tolerances of conidia and is involved in multiple mechanisms of stress tolerance. Ma Q; Jin K; Peng G; Xia Y Fungal Genet Biol; 2015 Oct; 83():68-77. PubMed ID: 26325214 [TBL] [Abstract][Full Text] [Related]
13. Differential susceptibility of blastospores and aerial conidia of entomopathogenic fungi to heat and UV-B stresses. Bernardo CDC; Pereira-Junior RA; Luz C; Mascarin GM; Kamp Fernandes ÉK Fungal Biol; 2020 Aug; 124(8):714-722. PubMed ID: 32690253 [TBL] [Abstract][Full Text] [Related]
14. Mutants and isolates of Metarhizium anisopliae are diverse in their relationships between conidial pigmentation and stress tolerance. Rangel DE; Butler MJ; Torabinejad J; Anderson AJ; Braga GU; Day AW; Roberts DW J Invertebr Pathol; 2006 Nov; 93(3):170-82. PubMed ID: 16934287 [TBL] [Abstract][Full Text] [Related]
15. Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus. Rangel DE; Alston DG; Roberts DW Mycol Res; 2008 Nov; 112(Pt 11):1355-61. PubMed ID: 18947989 [TBL] [Abstract][Full Text] [Related]
17. UV-B radiation-related effects on conidial inactivation and virulence against Ceratitis capitata (Wiedemann) (Diptera; Tephritidae) of phylloplane and soil Metarhizium sp. strains. Fernández-Bravo M; Flores-León A; Calero-López S; Gutiérrez-Sánchez F; Valverde-García P; Quesada-Moraga E J Invertebr Pathol; 2017 Sep; 148():142-151. PubMed ID: 28668256 [TBL] [Abstract][Full Text] [Related]
18. The phosphatase gene MaCdc14 negatively regulates UV-B tolerance by mediating the transcription of melanin synthesis-related genes and contributes to conidiation in Metarhizium acridum. Gao P; Jin K; Xia Y Curr Genet; 2020 Feb; 66(1):141-153. PubMed ID: 31256233 [TBL] [Abstract][Full Text] [Related]
19. Quantification of cyclobutane pyrimidine dimers induced by UVB radiation in conidia of the fungi Aspergillus fumigatus, Aspergillus nidulans, Metarhizium acridum and Metarhizium robertsii. Nascimento É; da Silva SH; Marques Edos R; Roberts DW; Braga GU Photochem Photobiol; 2010; 86(6):1259-66. PubMed ID: 20860693 [TBL] [Abstract][Full Text] [Related]
20. Tolerance to UV-B radiation of the entomopathogenic fungus Metarhizium rileyi. Licona-Juárez KC; Andrade EP; Medina HR; Oliveira JNS; Sosa-Gómez DR; Rangel DEN Fungal Biol; 2023; 127(7-8):1250-1258. PubMed ID: 37495315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]