BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 26885506)

  • 1. New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review.
    Kirmanidou Y; Sidira M; Drosou ME; Bennani V; Bakopoulou A; Tsouknidas A; Michailidis N; Michalakis K
    Biomed Res Int; 2016; 2016():2908570. PubMed ID: 26885506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants?
    Cordeiro JM; Barão VAR
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1201-1215. PubMed ID: 27987677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in the design of titanium alloys for orthopedic applications.
    Guillemot F
    Expert Rev Med Devices; 2005 Nov; 2(6):741-8. PubMed ID: 16293101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved mechanical, bio-corrosion properties and in vitro cell responses of Ti-Fe alloys as candidate dental implants.
    Niu J; Guo Y; Li K; Liu W; Dan Z; Sun Z; Chang H; Zhou L
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111917. PubMed ID: 33641910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrosion behavior of Ti-39Nb alloy for dentistry.
    Fojt J; Joska L; Malek J; Sefl V
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():532-7. PubMed ID: 26249624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of binary and ternary titanium alloys for dental implants.
    Cordeiro JM; Beline T; Ribeiro ALR; Rangel EC; da Cruz NC; Landers R; Faverani LP; Vaz LG; Fais LMG; Vicente FB; Grandini CR; Mathew MT; Sukotjo C; Barão VAR
    Dent Mater; 2017 Nov; 33(11):1244-1257. PubMed ID: 28778495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titanium and zirconium based alloys modified by intensive plastic deformation and nitrogen ion implantation for biocompatible implants.
    Byeli AV; Kukareko VA; Kononov AG
    J Mech Behav Biomed Mater; 2012 Feb; 6():89-94. PubMed ID: 22301177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys.
    Shabalovskaya SA
    Biomed Mater Eng; 1996; 6(4):267-89. PubMed ID: 8980835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytocompatibility of Ti-xZr alloys as dental implant materials.
    Ou P; Hao C; Liu J; He R; Wang B; Ruan J
    J Mater Sci Mater Med; 2021 Apr; 32(5):50. PubMed ID: 33891193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of chemically treated Ti-Zr system alloys for dental implant application.
    Cordeiro JM; Faverani LP; Grandini CR; Rangel EC; da Cruz NC; Nociti Junior FH; Almeida AB; Vicente FB; Morais BRG; Barão VAR; Assunção WG
    Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():849-861. PubMed ID: 30184814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titanium-Silver Alloy Miniplates for Mandibular Fixation: In Vitro and In Vivo Study.
    Lee JH; Kwon JS; Moon SK; Uhm SH; Choi BH; Joo UH; Kim KM; Kim KN
    J Oral Maxillofac Surg; 2016 Aug; 74(8):1622.e1-1622.e12. PubMed ID: 27192403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Titanium and titanium alloys as dental materials.
    Lautenschlager EP; Monaghan P
    Int Dent J; 1993 Jun; 43(3):245-53. PubMed ID: 8406955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of coupling asynchronous acoustoelectric effects on the corrosion behavior, microhardness and biocompatibility of biomedical titanium alloy strips.
    Ye X; Tang G
    J Mater Sci Mater Med; 2015 Jan; 26(1):5371. PubMed ID: 25596862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly wear-resistant and biocompatible carbon nanocomposite coatings for dental implants.
    Penkov OV; Pukha VE; Starikova SL; Khadem M; Starikov VV; Maleev MV; Kim DE
    Biomaterials; 2016 Sep; 102():130-6. PubMed ID: 27336185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strengthening mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe orthopaedic alloys.
    Banerjee R; Nag S; Stechschulte J; Fraser HL
    Biomaterials; 2004 Aug; 25(17):3413-9. PubMed ID: 15020114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Titanium alloys for fracture fixation implants.
    Disegi JA
    Injury; 2000 Dec; 31 Suppl 4():14-7. PubMed ID: 11270074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.
    Oliveira NT; Guastaldi AC
    Acta Biomater; 2009 Jan; 5(1):399-405. PubMed ID: 18707926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of density functional theory for evaluating the mechanical properties and structural stability of dental implant materials.
    Saini RS; Mosaddad SA; Heboyan A
    BMC Oral Health; 2023 Dec; 23(1):958. PubMed ID: 38041086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Titanium-Based Alloy Surface Modification with TiO
    Kitagawa IL; Miyazaki CM; Pitol-Palin L; Okamoto R; de Vasconcellos LMR; Constantino CJL; Lisboa-Filho PN
    ACS Appl Bio Mater; 2021 Apr; 4(4):3055-3066. PubMed ID: 35014394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.