BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 26885570)

  • 21. Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density.
    Cheng G; Chang TH; Qin Q; Huang H; Zhu Y
    Nano Lett; 2014 Feb; 14(2):754-8. PubMed ID: 24382314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Young's Modulus of Wurtzite and Zinc Blende InP Nanowires.
    Dunaevskiy M; Geydt P; Lähderanta E; Alekseev P; Haggrén T; Kakko JP; Jiang H; Lipsanen H
    Nano Lett; 2017 Jun; 17(6):3441-3446. PubMed ID: 28534623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Radiative recombination mechanisms in individual wurtzite ZnSe nanowires with a defect-free single-crystalline microstructure.
    Saxena A; Pan Q; Ruda HE
    Nanoscale; 2013 Apr; 5(7):2875-82. PubMed ID: 23446447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal phase engineering of self-catalyzed GaAs nanowires using a RHEED diagram.
    Dursap T; Vettori M; Danescu A; Botella C; Regreny P; Patriarche G; Gendry M; Penuelas J
    Nanoscale Adv; 2020 May; 2(5):2127-2134. PubMed ID: 36132505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measuring true Young's modulus of a cantilevered nanowire: effect of clamping on resonance frequency.
    Qin Q; Xu F; Cao Y; Ro PI; Zhu Y
    Small; 2012 Aug; 8(16):2571-6. PubMed ID: 22619003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth of All-Wurtzite InP/AlInP Core-Multishell Nanowire Array.
    Ishizaka F; Hiraya Y; Tomioka K; Motohisa J; Fukui T
    Nano Lett; 2017 Mar; 17(3):1350-1355. PubMed ID: 28166409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Addressing the Fundamental Electronic Properties of Wurtzite GaAs Nanowires by High-Field Magneto-Photoluminescence Spectroscopy.
    De Luca M; Rubini S; Felici M; Meaney A; Christianen PCM; Martelli F; Polimeni A
    Nano Lett; 2017 Nov; 17(11):6540-6547. PubMed ID: 29035544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonpolar GaAs Nanowires Catalyzed by Cu
    Wang H; Wang A; Wang Y; Yang Z; Yang J; Han N; Chen Y
    ACS Omega; 2020 Dec; 5(48):30963-30970. PubMed ID: 33324804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Defect Engineering: A Path toward Exceeding Perfection.
    Attariani H; Momeni K; Adkins K
    ACS Omega; 2017 Feb; 2(2):663-669. PubMed ID: 31457463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phase Transformation in Radially Merged Wurtzite GaAs Nanowires.
    Jacobsson D; Yang F; Hillerich K; Lenrick F; Lehmann S; Kriegner D; Stangl J; Wallenberg LR; Dick KA; Johansson J
    Cryst Growth Des; 2015 Oct; 15(10):4795-4803. PubMed ID: 26494983
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A story told by a single nanowire: optical properties of wurtzite GaAs.
    Ahtapodov L; Todorovic J; Olk P; Mjåland T; Slåttnes P; Dheeraj DL; van Helvoort AT; Fimland BO; Weman H
    Nano Lett; 2012 Dec; 12(12):6090-5. PubMed ID: 23131181
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hole and Electron Effective Masses in Single InP Nanowires with a Wurtzite-Zincblende Homojunction.
    Tedeschi D; Fonseka HA; Blundo E; Granados Del Águila A; Guo Y; Tan HH; Christianen PCM; Jagadish C; Polimeni A; De Luca M
    ACS Nano; 2020 Sep; 14(9):11613-11622. PubMed ID: 32865391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Defect-Induced Nucleation and Epitaxy: A New Strategy toward the Rational Synthesis of WZ-GaN/3C-SiC Core-Shell Heterostructures.
    Liu B; Yang B; Yuan F; Liu Q; Shi D; Jiang C; Zhang J; Staedler T; Jiang X
    Nano Lett; 2015 Dec; 15(12):7837-46. PubMed ID: 26517395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insufficiency of the Young's modulus for illustrating the mechanical behavior of GaN nanowires.
    Kouhpanji MRZ; Behzadirad M; Feezell D; Busani T
    Nanotechnology; 2018 May; 29(20):205706. PubMed ID: 29473824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient methodology to correlate structural with optical properties of GaAs nanowires based on scanning electron microscopy.
    Lin WH; Jahn U; Küpers H; Luna E; Lewis RB; Geelhaar L; Brandt O
    Nanotechnology; 2017 Oct; 28(41):415703. PubMed ID: 28767046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Real-time thermal decomposition kinetics of GaAs nanowires and their crystal polytypes on the atomic scale.
    Schmiedeke P; Panciera F; Harmand JC; Travers L; Koblmüller G
    Nanoscale Adv; 2023 May; 5(11):2994-3004. PubMed ID: 37260482
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable Mechanical Property and Structural Transition of Silicon Nitride Nanowires Induced by Focused Ion Beam Irradiation.
    Wei B; Deng Q; Ji Y; Wang Z; Han X
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):32175-32181. PubMed ID: 32551486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A computational and experimental investigation of the mechanical properties of single ZnTe nanowires.
    Davami K; Mortazavi B; Ghassemi HM; Yassar RS; Lee JS; Rémond Y; Meyyappan M
    Nanoscale; 2012 Feb; 4(3):897-903. PubMed ID: 22173853
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Size-dependent Young's modulus in ZnO nanowires with strong surface atomic bonds.
    Fan S; Bi S; Li Q; Guo Q; Liu J; Ouyang Z; Jiang C; Song J
    Nanotechnology; 2018 Mar; 29(12):125702. PubMed ID: 29350192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Size dependence of Young's modulus in ZnO nanowires.
    Chen CQ; Shi Y; Zhang YS; Zhu J; Yan YJ
    Phys Rev Lett; 2006 Feb; 96(7):075505. PubMed ID: 16606107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.