BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 26885699)

  • 1. Life-Span Development of Brain Network Integration Assessed with Phase Lag Index Connectivity and Minimum Spanning Tree Graphs.
    Smit DJ; de Geus EJ; Boersma M; Boomsma DI; Stam CJ
    Brain Connect; 2016 May; 6(4):312-25. PubMed ID: 26885699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graph analysis of EEG resting state functional networks in dyslexic readers.
    Fraga González G; Van der Molen MJW; Žarić G; Bonte M; Tijms J; Blomert L; Stam CJ; Van der Molen MW
    Clin Neurophysiol; 2016 Sep; 127(9):3165-3175. PubMed ID: 27476025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The minimum spanning tree: an unbiased method for brain network analysis.
    Tewarie P; van Dellen E; Hillebrand A; Stam CJ
    Neuroimage; 2015 Jan; 104():177-88. PubMed ID: 25451472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG Resting State Functional Connectivity in Adult Dyslexics Using Phase Lag Index and Graph Analysis.
    Fraga González G; Smit DJA; van der Molen MJW; Tijms J; Stam CJ; de Geus EJC; van der Molen MW
    Front Hum Neurosci; 2018; 12():341. PubMed ID: 30214403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of epoch length on estimated EEG functional connectivity and brain network organisation.
    Fraschini M; Demuru M; Crobe A; Marrosu F; Stam CJ; Hillebrand A
    J Neural Eng; 2016 Jun; 13(3):036015. PubMed ID: 27137952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple and difficult mathematics in children: a minimum spanning tree EEG network analysis.
    Vourkas M; Karakonstantaki E; Simos PG; Tsirka V; Antonakakis M; Vamvoukas M; Stam C; Dimitriadis S; Micheloyannis S
    Neurosci Lett; 2014 Jul; 576():28-33. PubMed ID: 24887585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-dependence of graph theory metrics in functional connectivity analysis.
    Chiang S; Cassese A; Guindani M; Vannucci M; Yeh HJ; Haneef Z; Stern JM
    Neuroimage; 2016 Jan; 125():601-615. PubMed ID: 26518632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growing trees in child brains: graph theoretical analysis of electroencephalography-derived minimum spanning tree in 5- and 7-year-old children reflects brain maturation.
    Boersma M; Smit DJ; Boomsma DI; De Geus EJ; Delemarre-van de Waal HA; Stam CJ
    Brain Connect; 2013; 3(1):50-60. PubMed ID: 23106635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered resting functional network topology assessed using graph theory in youth with attention-deficit/hyperactivity disorder.
    Wang Y; Zuo C; Xu Q; Liao S; Kanji M; Wang D
    Prog Neuropsychopharmacol Biol Psychiatry; 2020 Mar; 98():109796. PubMed ID: 31676467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epilepsy surgery outcome and functional network alterations in longitudinal MEG: a minimum spanning tree analysis.
    van Dellen E; Douw L; Hillebrand A; de Witt Hamer PC; Baayen JC; Heimans JJ; Reijneveld JC; Stam CJ
    Neuroimage; 2014 Feb; 86():354-63. PubMed ID: 24128736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental Changes in Brain Network Hub Connectivity in Late Adolescence.
    Baker ST; Lubman DI; Yücel M; Allen NB; Whittle S; Fulcher BD; Zalesky A; Fornito A
    J Neurosci; 2015 Jun; 35(24):9078-87. PubMed ID: 26085632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain Network Connectivity and Topological Analysis During Voluntary Arm Movements.
    Storti SF; Formaggio E; Manganotti P; Menegaz G
    Clin EEG Neurosci; 2016 Oct; 47(4):276-290. PubMed ID: 26251456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative and Qualitative Comparison of EEG-Based Neural Network Organization in Two Schizophrenia Groups Differing in the Duration of Illness and Disease Burden: Graph Analysis With Application of the Minimum Spanning Tree.
    Jonak K; Krukow P; Jonak KE; Grochowski C; Karakuła-Juchnowicz H
    Clin EEG Neurosci; 2019 Jul; 50(4):231-241. PubMed ID: 30322279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Random topology organization and decreased visual processing of internet addiction: Evidence from a minimum spanning tree analysis.
    Wang H; Sun Y; Lv J; Bo S
    Brain Behav; 2019 Mar; 9(3):e01218. PubMed ID: 30706671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Functional Segregation and Integration in Human Brain Network During Complex Tasks.
    Shen Ren ; Junhua Li ; Taya F; deSouza J; Thakor NV; Bezerianos A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):547-556. PubMed ID: 28113670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional brain network organisation of children between 2 and 5 years derived from reconstructed activity of cortical sources of high-density EEG recordings.
    Bathelt J; O'Reilly H; Clayden JD; Cross JH; de Haan M
    Neuroimage; 2013 Nov; 82():595-604. PubMed ID: 23769920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical assessment of connectivity measures for EEG data: a simulation study.
    Haufe S; Nikulin VV; Müller KR; Nolte G
    Neuroimage; 2013 Jan; 64():120-33. PubMed ID: 23006806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key Brain Network Nodes Show Differential Cognitive Relevance and Developmental Trajectories during Childhood and Adolescence.
    Kolskår KK; Alnæs D; Kaufmann T; Richard G; Sanders AM; Ulrichsen KM; Moberget T; Andreassen OA; Nordvik JE; Westlye LT
    eNeuro; 2018; 5(4):. PubMed ID: 30073200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The brain matures with stronger functional connectivity and decreased randomness of its network.
    Smit DJ; Boersma M; Schnack HG; Micheloyannis S; Boomsma DI; Hulshoff Pol HE; Stam CJ; de Geus EJ
    PLoS One; 2012; 7(5):e36896. PubMed ID: 22615837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disentangling age- and disease-related alterations in schizophrenia brain network using structural equation modeling: A graph theoretical study based on minimum spanning tree.
    Liu X; Yang H; Becker B; Huang X; Luo C; Meng C; Biswal B
    Hum Brain Mapp; 2021 Jul; 42(10):3023-3041. PubMed ID: 33960579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.