BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26886174)

  • 1. Noncovalent Immobilization of a Molecular Iron-Based Electrocatalyst on Carbon Electrodes for Selective, Efficient CO2-to-CO Conversion in Water.
    Maurin A; Robert M
    J Am Chem Soc; 2016 Mar; 138(8):2492-5. PubMed ID: 26886174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncovalent immobilization of electrocatalysts on carbon electrodes for fuel production.
    Blakemore JD; Gupta A; Warren JJ; Brunschwig BS; Gray HB
    J Am Chem Soc; 2013 Dec; 135(49):18288-91. PubMed ID: 24245686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion.
    Costentin C; Passard G; Robert M; Savéant JM
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):14990-4. PubMed ID: 25288744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hybrid Co Quaterpyridine Complex/Carbon Nanotube Catalytic Material for CO
    Wang M; Chen L; Lau TC; Robert M
    Angew Chem Int Ed Engl; 2018 Jun; 57(26):7769-7773. PubMed ID: 29693759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst.
    Costentin C; Drouet S; Robert M; Savéant JM
    Science; 2012 Oct; 338(6103):90-4. PubMed ID: 23042890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Catalytic Activity of Cobalt Porphyrin in CO
    Hu XM; Rønne MH; Pedersen SU; Skrydstrup T; Daasbjerg K
    Angew Chem Int Ed Engl; 2017 Jun; 56(23):6468-6472. PubMed ID: 28466962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocatalytic CO
    Li TT; Shan B; Xu W; Meyer TJ
    ChemSusChem; 2019 Jun; 12(11):2402-2408. PubMed ID: 31070011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization and electrochemical properties of ruthenium and iridium complexes on carbon electrodes.
    Gupta A; Blakemore JD; Brunschwig BS; Gray HB
    J Phys Condens Matter; 2016 Mar; 28(9):094002. PubMed ID: 26871865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion.
    Costentin C; Robert M; Savéant JM
    Acc Chem Res; 2015 Dec; 48(12):2996-3006. PubMed ID: 26559053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic CO
    Maurin A; Robert M
    Chem Commun (Camb); 2016 Oct; 52(81):12084-12087. PubMed ID: 27709201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-inspired cofacial Fe porphyrin dimers for efficient electrocatalytic CO2 to CO conversion: Overpotential tuning by substituents at the porphyrin rings.
    Zahran ZN; Mohamed EA; Naruta Y
    Sci Rep; 2016 Apr; 6():24533. PubMed ID: 27087483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalization of Carbon Nanotubes with Nickel Cyclam for the Electrochemical Reduction of CO
    Pugliese S; Huan NT; Forte J; Grammatico D; Zanna S; Su BL; Li Y; Fontecave M
    ChemSusChem; 2020 Dec; 13(23):6449-6456. PubMed ID: 33085837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient and selective molecular catalyst for the CO2-to-CO electrochemical conversion in water.
    Costentin C; Robert M; Savéant JM; Tatin A
    Proc Natl Acad Sci U S A; 2015 Jun; 112(22):6882-6. PubMed ID: 26038542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of a molecular catalyst on carbon nanotubes for highly efficient electro-catalytic water oxidation.
    Li F; Li L; Tong L; Daniel Q; Göthelid M; Sun L
    Chem Commun (Camb); 2014 Nov; 50(90):13948-51. PubMed ID: 25265253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncovalent assembly of picket-fence porphyrins on nitrogen-doped carbon nanotubes for highly efficient catalysis and biosensing.
    Tu W; Lei J; Jian G; Hu Z; Ju H
    Chemistry; 2010 Apr; 16(13):4120-6. PubMed ID: 20162648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin.
    Zhang L; Jiang X; Wang E; Dong S
    Biosens Bioelectron; 2005 Aug; 21(2):337-45. PubMed ID: 16023961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Re(tBu-bpy)(CO)
    Zhanaidarova A; Jones SC; Despagnet-Ayoub E; Pimentel BR; Kubiak CP
    J Am Chem Soc; 2019 Oct; 141(43):17270-17277. PubMed ID: 31580669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-Immobilized fac-Re(bipy)(CO)3Cl for Syngas Generation from Carbon Dioxide.
    Zhou X; Micheroni D; Lin Z; Poon C; Li Z; Lin W
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4192-8. PubMed ID: 26799656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of the Surface Microenvironment on the Redox Properties of a Co-Based Molecular Cathode for Selective Aqueous Electrochemical CO
    Haake M; Aldakov D; Pérard J; Veronesi G; Tapia AA; Reuillard B; Artero V
    J Am Chem Soc; 2024 Jun; 146(22):15345-15355. PubMed ID: 38767986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Performance Fe Porphyrin/Ionic Liquid Co-catalyst for Electrochemical CO2 Reduction.
    Choi J; Benedetti TM; Jalili R; Walker A; Wallace GG; Officer DL
    Chemistry; 2016 Sep; 22(40):14158-61. PubMed ID: 27464300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.