These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. The transglutaminase activating metalloprotease inhibitor from Streptomyces mobaraensis is a glutamine and lysine donor substrate of the intrinsic transglutaminase. Schmidt S; Adolf F; Fuchsbauer HL FEBS Lett; 2008 Sep; 582(20):3132-8. PubMed ID: 18691578 [TBL] [Abstract][Full Text] [Related]
5. Features of the transglutaminase-activating metalloprotease from Streptomyces mobaraensis DSM 40847 produced in Escherichia coli. Juettner NE; Classen M; Colin F; Hoffmann SB; Meyners C; Pfeifer F; Fuchsbauer HL J Biotechnol; 2018 Sep; 281():115-122. PubMed ID: 29981445 [TBL] [Abstract][Full Text] [Related]
6. A novel transglutaminase substrate from Streptomyces mobaraensis triggers autolysis of neutral metalloproteases. Sarafeddinov A; Schmidt S; Adolf F; Mainusch M; Bender A; Fuchsbauer HL Biosci Biotechnol Biochem; 2009 May; 73(5):993-9. PubMed ID: 19420706 [TBL] [Abstract][Full Text] [Related]
7. Structure of the Dispase Autolysis-inducing Protein from Streptomyces mobaraensis and Glutamine Cross-linking Sites for Transglutaminase. Fiebig D; Schmelz S; Zindel S; Ehret V; Beck J; Ebenig A; Ehret M; Fröls S; Pfeifer F; Kolmar H; Fuchsbauer HL; Scrima A J Biol Chem; 2016 Sep; 291(39):20417-26. PubMed ID: 27493205 [TBL] [Abstract][Full Text] [Related]
8. Substrate specificity analysis of microbial transglutaminase using proteinaceous protease inhibitors as natural model substrates. Taguchi S; Nishihama KI; Igi K; Ito K; Taira H; Motoki M; Momose H J Biochem; 2000 Sep; 128(3):415-25. PubMed ID: 10965040 [TBL] [Abstract][Full Text] [Related]
9. Biochemical study of sortase E2 from Streptomyces mobaraensis and determination of transglutaminase cross-linking sites. Anderl A; Ferlemann C; Muth M; Henkel-Gupalo A; Ebenig A; Brenner-Weiß G; Kolmar H; Fuchsbauer HL FEBS Lett; 2019 Aug; 593(15):1944-1956. PubMed ID: 31155711 [TBL] [Abstract][Full Text] [Related]
10. Illuminating structure and acyl donor sites of a physiological transglutaminase substrate from Streptomyces mobaraensis. Juettner NE; Schmelz S; Bogen JP; Happel D; Fessner WD; Pfeifer F; Fuchsbauer HL; Scrima A Protein Sci; 2018 May; 27(5):910-922. PubMed ID: 29430769 [TBL] [Abstract][Full Text] [Related]
11. Structure of a glutamine donor mimicking inhibitory peptide shaped by the catalytic cleft of microbial transglutaminase. Juettner NE; Schmelz S; Kraemer A; Knapp S; Becker B; Kolmar H; Scrima A; Fuchsbauer HL FEBS J; 2018 Dec; 285(24):4684-4694. PubMed ID: 30318745 [TBL] [Abstract][Full Text] [Related]
12. Overproduction of soluble recombinant transglutaminase from Streptomyces netropsis in Escherichia coli. Yu YJ; Wu SC; Chan HH; Chen YC; Chen ZY; Yang MT Appl Microbiol Biotechnol; 2008 Dec; 81(3):523-32. PubMed ID: 18810430 [TBL] [Abstract][Full Text] [Related]
14. The ddcA gene from Streptomyces fradiae encodes an extracellular beta-lactamase with penicillinase and cephalosporinase activities. Fouces R; Díez B; Velasco J; Barredo JL J Biotechnol; 2001 Nov; 84(2):127-32. PubMed ID: 11090684 [TBL] [Abstract][Full Text] [Related]
15. Approaching transglutaminase from Streptomyces bacteria over three decades. Fuchsbauer HL FEBS J; 2022 Aug; 289(16):4680-4703. PubMed ID: 34102019 [TBL] [Abstract][Full Text] [Related]
16. Two different proteases from Streptomyces hygroscopicus are involved in transglutaminase activation. Zhang D; Wang M; Wu J; Cui L; Du G; Chen J J Agric Food Chem; 2008 Nov; 56(21):10261-4. PubMed ID: 18921967 [TBL] [Abstract][Full Text] [Related]
17. Molecular insights into the mechanism of substrate recognition of Tokai S; Uraji M; Hatanaka T Biosci Biotechnol Biochem; 2020 Mar; 84(3):575-582. PubMed ID: 31766946 [TBL] [Abstract][Full Text] [Related]
18. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase. Banerjee S; Pieper U; Kapadia G; Pannell LK; Herzberg O Biochemistry; 1998 Mar; 37(10):3286-96. PubMed ID: 9521648 [TBL] [Abstract][Full Text] [Related]
19. Exploring sequence requirements for C₃/C₄ carboxylate recognition in the Pseudomonas aeruginosa cephalosporinase: Insights into plasticity of the AmpC β-lactamase. Drawz SM; Taracila M; Caselli E; Prati F; Bonomo RA Protein Sci; 2011 Jun; 20(6):941-58. PubMed ID: 21404358 [TBL] [Abstract][Full Text] [Related]
20. Streptomyces albus G serine beta-lactamase. Probing of the catalytic mechanism via molecular modelling of mutant enzymes. Lamotte-Brasseur J; Jacob-Dubuisson F; Dive G; Frère JM; Ghuysen JM Biochem J; 1992 Feb; 282 ( Pt 1)(Pt 1):189-95. PubMed ID: 1540134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]