These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 26886602)

  • 41. Retinal nerve fiber layer damage as assessed by optical coherence tomography in eyes with a visual field defect detected by frequency doubling technology perimetry but not by standard automated perimetry.
    Kim TW; Zangwill LM; Bowd C; Sample PA; Shah N; Weinreb RN
    Ophthalmology; 2007 Jun; 114(6):1053-7. PubMed ID: 17239441
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Frequency doubling perimetry and short-wavelength automated perimetry to detect early glaucoma.
    Leeprechanon N; Giaconi JA; Manassakorn A; Hoffman D; Caprioli J
    Ophthalmology; 2007 May; 114(5):931-7. PubMed ID: 17397926
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of yellow-tinted intraocular lens on standard automated perimetry and short wavelength automated perimetry in patients with glaucoma.
    Nilforushan N; Parsamanesh M; Yu F; Nassiri N; Miraftabi A; Coleman AL
    Middle East Afr J Ophthalmol; 2014; 21(3):216-9. PubMed ID: 25100904
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Combining structural and functional testing for detection of glaucoma.
    Shah NN; Bowd C; Medeiros FA; Weinreb RN; Sample PA; Hoffmann EM; Zangwill LM
    Ophthalmology; 2006 Sep; 113(9):1593-602. PubMed ID: 16949444
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure and function evaluation (SAFE): I. criteria for glaucomatous visual field loss using standard automated perimetry (SAP) and short wavelength automated perimetry (SWAP).
    Johnson CA; Sample PA; Cioffi GA; Liebmann JR; Weinreb RN
    Am J Ophthalmol; 2002 Aug; 134(2):177-85. PubMed ID: 12140023
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Diagnostic sensitivity of fast blue-yellow and standard automated perimetry in early glaucoma: a comparison between different test programs.
    Bengtsson B; Heijl A
    Ophthalmology; 2006 Jul; 113(7):1092-7. PubMed ID: 16815399
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pulsar perimetry in the diagnosis of early glaucoma.
    Zeppieri M; Brusini P; Parisi L; Johnson CA; Sampaolesi R; Salvetat ML
    Am J Ophthalmol; 2010 Jan; 149(1):102-12. PubMed ID: 19800607
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glaucoma diagnostics.
    Geimer SA
    Acta Ophthalmol; 2013 Feb; 91 Thesis 1():1-32. PubMed ID: 23384049
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Diagnostic approaches for early detection of glaucoma progression].
    Arend KO; Plange N
    Klin Monbl Augenheilkd; 2006 Mar; 223(3):194-216. PubMed ID: 16552653
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Clinical evaluation of frequency doubling technology perimetry using the Humphrey Matrix 24-2 threshold strategy.
    Spry PG; Hussin HM; Sparrow JM
    Br J Ophthalmol; 2005 Aug; 89(8):1031-5. PubMed ID: 16024860
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of standard automated perimetry and newer functional methods for glaucoma diagnosis and follow-up.
    Alencar LM; Medeiros FA
    Indian J Ophthalmol; 2011 Jan; 59 Suppl(Suppl1):S53-8. PubMed ID: 21150035
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Combined use of frequency doubling perimetry and polarimetric measurements of retinal nerve fiber layer in glaucoma detection.
    Horn FK; Nguyen NX; Mardin CY; Jünemann AG
    Am J Ophthalmol; 2003 Feb; 135(2):160-8. PubMed ID: 12566019
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Frequency doubling technology and standard automated perimetry in detection of glaucoma among glaucoma suspects.
    Patyal S; Kotwal A; Banarji A; Gurunadh VS
    Med J Armed Forces India; 2014 Oct; 70(4):332-7. PubMed ID: 25382906
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Short-wavelength automated perimetry and motion automated perimetry in patients with glaucoma.
    Sample PA; Bosworth CF; Weinreb RN
    Arch Ophthalmol; 1997 Sep; 115(9):1129-33. PubMed ID: 9298053
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Psychophysical investigation of ganglion cell loss in early glaucoma.
    Spry PG; Johnson CA; Mansberger SL; Cioffi GA
    J Glaucoma; 2005 Feb; 14(1):11-9. PubMed ID: 15650598
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The ability of short-wavelength automated perimetry to predict conversion to glaucoma.
    van der Schoot J; Reus NJ; Colen TP; Lemij HG
    Ophthalmology; 2010 Jan; 117(1):30-4. PubMed ID: 19896194
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Frequency doubling perimetry and the detection of eye disease in the community.
    Cioffi GA; Mansberger S; Spry P; Johnson C; Van Buskirk EM
    Trans Am Ophthalmol Soc; 2000; 98():195-9; discussion 199-202. PubMed ID: 11190023
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Humphrey matrix frequency doubling perimetry for detection of visual-field defects in open-angle glaucoma.
    Clement CI; Goldberg I; Healey PR; Graham S
    Br J Ophthalmol; 2009 May; 93(5):582-8. PubMed ID: 18669543
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure-function correlations in glaucoma using matrix and standard automated perimetry versus time-domain and spectral-domain OCT devices.
    Pinto LM; Costa EF; Melo LA; Gross PB; Sato ET; Almeida AP; Maia A; Paranhos A
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(5):3074-80. PubMed ID: 24722699
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Usefulness of frequency doubling technology perimetry 24-2 in glaucoma with parafoveal scotoma.
    Jung KI; Kim EK; Park CK
    Medicine (Baltimore); 2017 Jun; 96(24):e6855. PubMed ID: 28614218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.