These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26886660)

  • 1. CRISPR/Cas9 corrects retinal dystrophy in rats.
    Graham DM
    Lab Anim (NY); 2016 Mar; 45(3):85. PubMed ID: 26886660
    [No Abstract]   [Full Text] [Related]  

  • 2. In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa.
    Bakondi B; Lv W; Lu B; Jones MK; Tsai Y; Kim KJ; Levy R; Akhtar AA; Breunig JJ; Svendsen CN; Wang S
    Mol Ther; 2016 Mar; 24(3):556-63. PubMed ID: 26666451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of CRISPR Tools for Variant Interpretation and Disease Modeling in Inherited Retinal Dystrophies.
    Fuster-García C; García-Bohórquez B; Rodríguez-Muñoz A; Millán JM; García-García G
    Genes (Basel); 2020 Apr; 11(5):. PubMed ID: 32349249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Editing Tools for Gene Therapy in Inherited Retinal Dystrophies.
    Pulman J; Sahel JA; Dalkara D
    CRISPR J; 2022 Jun; 5(3):377-388. PubMed ID: 35506982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single AAV-mediated mutation replacement genome editing in limited number of photoreceptors restores vision in mice.
    Nishiguchi KM; Fujita K; Miya F; Katayama S; Nakazawa T
    Nat Commun; 2020 Jan; 11(1):482. PubMed ID: 31980606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models.
    Shao M; Xu TR; Chen CS
    Dongwuxue Yanjiu; 2016 Jul; 37(4):191-204. PubMed ID: 27469250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The new landscape of retinal gene therapy.
    Ku CA; Pennesi ME
    Am J Med Genet C Semin Med Genet; 2020 Sep; 184(3):846-859. PubMed ID: 32888388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling human disease in rodents by CRISPR/Cas9 genome editing.
    Birling MC; Herault Y; Pavlovic G
    Mamm Genome; 2017 Aug; 28(7-8):291-301. PubMed ID: 28677007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR Cas9 based genome editing in inherited retinal dystrophies.
    Bansal M; Acharya S; Sharma S; Phutela R; Rauthan R; Maiti S; Chakraborty D
    Ophthalmic Genet; 2021 Aug; 42(4):365-374. PubMed ID: 33821751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of the CRISPR/Cas9 system for the efficient production of mutant mice using crRNA/tracrRNA with Cas9 nickase and FokI-dCas9.
    Terao M; Tamano M; Hara S; Kato T; Kinoshita M; Takada S
    Exp Anim; 2016 Jul; 65(3):275-83. PubMed ID: 26972821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Therapy in Retinal Dystrophies.
    Ziccardi L; Cordeddu V; Gaddini L; Matteucci A; Parravano M; Malchiodi-Albedi F; Varano M
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31739639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo gene therapy potentials of CRISPR-Cas9.
    Xue HY; Zhang X; Wang Y; Xiaojie L; Dai WJ; Xu Y
    Gene Ther; 2016 Jul; 23(7):557-9. PubMed ID: 27029608
    [No Abstract]   [Full Text] [Related]  

  • 13. Generation of genetically modified mice using CRISPR/Cas9 and haploid embryonic stem cell systems.
    Jin LF; Li JS
    Dongwuxue Yanjiu; 2016 Jul; 37(4):205-13. PubMed ID: 27469251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies.
    Slijkerman RW; Song F; Astuti GD; Huynen MA; van Wijk E; Stieger K; Collin RW
    Prog Retin Eye Res; 2015 Sep; 48():137-59. PubMed ID: 25936606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal ganglion cell numbers and delayed retinal ganglion cell death in the P23H rat retina.
    García-Ayuso D; Salinas-Navarro M; Agudo M; Cuenca N; Pinilla I; Vidal-Sanz M; Villegas-Pérez MP
    Exp Eye Res; 2010 Dec; 91(6):800-10. PubMed ID: 20955700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dog models for blinding inherited retinal dystrophies.
    Petersen-Jones SM; Komáromy AM
    Hum Gene Ther Clin Dev; 2015 Mar; 26(1):15-26. PubMed ID: 25671556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy.
    Ousterout DG; Kabadi AM; Thakore PI; Majoros WH; Reddy TE; Gersbach CA
    Nat Commun; 2015 Feb; 6():6244. PubMed ID: 25692716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Commentary: CRISPR gene editing for inherited retinal dystrophies: Towards clinical translation.
    Bansal M; Chakraborty D
    Indian J Ophthalmol; 2022 Jul; 70(7):2326-2327. PubMed ID: 35791113
    [No Abstract]   [Full Text] [Related]  

  • 20. Retinal dystrophies and gene therapy.
    Sundaram V; Moore AT; Ali RR; Bainbridge JW
    Eur J Pediatr; 2012 May; 171(5):757-65. PubMed ID: 22080959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.