These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26886732)

  • 21. Argo_CUDA: Exhaustive GPU based approach for motif discovery in large DNA datasets.
    Vishnevsky OV; Bocharnikov AV; Kolchanov NA
    J Bioinform Comput Biol; 2018 Feb; 16(1):1740012. PubMed ID: 29281953
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Annotation of gene promoters by integrative data-mining of ChIP-seq Pol-II enrichment data.
    Gupta R; Wikramasinghe P; Bhattacharyya A; Perez FA; Pal S; Davuluri RV
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S65. PubMed ID: 20122241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. iASeq: integrative analysis of allele-specificity of protein-DNA interactions in multiple ChIP-seq datasets.
    Wei Y; Li X; Wang QF; Ji H
    BMC Genomics; 2012 Nov; 13():681. PubMed ID: 23194258
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments.
    Laajala TD; Raghav S; Tuomela S; Lahesmaa R; Aittokallio T; Elo LL
    BMC Genomics; 2009 Dec; 10():618. PubMed ID: 20017957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational analysis of protein-DNA interactions from ChIP-seq data.
    Rougemont J; Naef F
    Methods Mol Biol; 2012; 786():263-73. PubMed ID: 21938632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analyzing ChIP-seq data: preprocessing, normalization, differential identification, and binding pattern characterization.
    Taslim C; Huang K; Huang T; Lin S
    Methods Mol Biol; 2012; 802():275-91. PubMed ID: 22130887
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparing genome-wide chromatin profiles using ChIP-chip or ChIP-seq.
    Johannes F; Wardenaar R; Colomé-Tatché M; Mousson F; de Graaf P; Mokry M; Guryev V; Timmers HT; Cuppen E; Jansen RC
    Bioinformatics; 2010 Apr; 26(8):1000-6. PubMed ID: 20208068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimizing detection of transcription factor-binding sites in ChIP-seq experiments.
    Kallio A; Elo LL
    Methods Mol Biol; 2013; 1038():181-91. PubMed ID: 23872976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peak-Finding Algorithms.
    Hung JH; Weng Z
    Cold Spring Harb Protoc; 2017 Mar; 2017(3):. PubMed ID: 27574196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A signal-noise model for significance analysis of ChIP-seq with negative control.
    Xu H; Handoko L; Wei X; Ye C; Sheng J; Wei CL; Lin F; Sung WK
    Bioinformatics; 2010 May; 26(9):1199-204. PubMed ID: 20371496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing computational methods for transcription factor target gene identification based on ChIP-seq data.
    Sikora-Wohlfeld W; Ackermann M; Christodoulou EG; Singaravelu K; Beyer A
    PLoS Comput Biol; 2013; 9(11):e1003342. PubMed ID: 24278002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A hidden Ising model for ChIP-chip data analysis.
    Mo Q; Liang F
    Bioinformatics; 2010 Mar; 26(6):777-83. PubMed ID: 20110277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide profiling of transcription factor binding and epigenetic marks in adipocytes by ChIP-seq.
    Nielsen R; Mandrup S
    Methods Enzymol; 2014; 537():261-79. PubMed ID: 24480351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CASSys: an integrated software-system for the interactive analysis of ChIP-seq data.
    Alawi M; Kurtz S; Beckstette M
    J Integr Bioinform; 2011 Jun; 8(2):155. PubMed ID: 21690655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M; Tabari ES; Su Z
    BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ChIP-PED enhances the analysis of ChIP-seq and ChIP-chip data.
    Wu G; Yustein JT; McCall MN; Zilliox M; Irizarry RA; Zeller K; Dang CV; Ji H
    Bioinformatics; 2013 May; 29(9):1182-9. PubMed ID: 23457041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systematic discovery of cofactor motifs from ChIP-seq data by SIOMICS.
    Ding J; Dhillon V; Li X; Hu H
    Methods; 2015 Jun; 79-80():47-51. PubMed ID: 25171961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational analysis of ChIP-seq data.
    Ji H
    Methods Mol Biol; 2010; 674():143-59. PubMed ID: 20827590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Imputation for transcription factor binding predictions based on deep learning.
    Qin Q; Feng J
    PLoS Comput Biol; 2017 Feb; 13(2):e1005403. PubMed ID: 28234893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probabilistic Inference on Multiple Normalized Signal Profiles from Next Generation Sequencing: Transcription Factor Binding Sites.
    Wong KC; Peng C; Li Y
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1416-28. PubMed ID: 26671811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.