These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26886756)

  • 21. High-throughput transcriptome sequencing analysis provides preliminary insights into the biotransformation mechanism of Rhodopseudomonas palustris treated with alpha-rhamnetin-3-rhamnoside.
    Bi L; Guan CJ; Yang GE; Yang F; Yan HY; Li QS
    Microbiol Res; 2016 Apr; 185():1-12. PubMed ID: 26946373
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium.
    Fixen KR; Zheng Y; Harris DF; Shaw S; Yang ZY; Dean DR; Seefeldt LC; Harwood CS
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):10163-7. PubMed ID: 27551090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of uptake hydrogenase and effects of hydrogen utilization on gene expression in Rhodopseudomonas palustris.
    Rey FE; Oda Y; Harwood CS
    J Bacteriol; 2006 Sep; 188(17):6143-52. PubMed ID: 16923881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptomic Responses of the Interactions between Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009 in a Cellulose-Grown Coculture for Enhanced Hydrogen Production.
    Lu H; Chen J; Jia Y; Cai M; Lee PKH
    Appl Environ Microbiol; 2016 Aug; 82(15):4546-4559. PubMed ID: 27208134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Small-Molecule Acetylation Controls the Degradation of Benzoate and Photosynthesis in Rhodopseudomonas palustris.
    VanDrisse CM; Escalante-Semerena JC
    mBio; 2018 Oct; 9(5):. PubMed ID: 30327443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of squalene in Synechocystis sp. PCC 6803.
    Englund E; Pattanaik B; Ubhayasekera SJ; Stensjö K; Bergquist J; Lindberg P
    PLoS One; 2014; 9(3):e90270. PubMed ID: 24625633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of thiosulfate on the photosynthetic growth of Rhodopseudomonas palustris.
    Rolls JP; Lindstrom ES
    J Bacteriol; 1967 Oct; 94(4):860-9. PubMed ID: 6051358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Thiosulfate metabolism in Rhodopseudomonas palustris].
    Rodova NA; Pedan LV
    Mikrobiologiia; 1980; 49(2):221-6. PubMed ID: 6771496
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Carbon dioxide assimilation by Rhodopseudomonas palustris].
    Cherniad'ev II; Kondrat'eva EN; Doman NG
    Izv Akad Nauk SSSR Biol; 1969; 5():670-5. PubMed ID: 5372900
    [No Abstract]   [Full Text] [Related]  

  • 30. Essential Genome of the Metabolically Versatile Alphaproteobacterium Rhodopseudomonas palustris.
    Pechter KB; Gallagher L; Pyles H; Manoil CS; Harwood CS
    J Bacteriol; 2015 Dec; 198(5):867-76. PubMed ID: 26712940
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of Alternative Nitrogenases in
    du Toit JP; Lea-Smith DJ; Git A; Hervey JRD; Howe CJ; Pott RWM
    ACS Synth Biol; 2021 Sep; 10(9):2167-2178. PubMed ID: 34431288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The O2-responsive repressor PpsR2 but not PpsR1 transduces a light signal sensed by the BphP1 phytochrome in Rhodopseudomonas palustris CGA009.
    Braatsch S; Johnson JA; Noll K; Beatty JT
    FEMS Microbiol Lett; 2007 Jul; 272(1):60-4. PubMed ID: 17456182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris.
    Larimer FW; Chain P; Hauser L; Lamerdin J; Malfatti S; Do L; Land ML; Pelletier DA; Beatty JT; Lang AS; Tabita FR; Gibson JL; Hanson TE; Bobst C; Torres JL; Peres C; Harrison FH; Gibson J; Harwood CS
    Nat Biotechnol; 2004 Jan; 22(1):55-61. PubMed ID: 14704707
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tributyl phosphate degradation by Rhodopseudomonas palustris and other photosynthetic bacteria.
    Berne C; Allainmat B; Garcia D
    Biotechnol Lett; 2005 Apr; 27(8):561-6. PubMed ID: 15973490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Skatole remediation potential of Rhodopseudomonas palustris WKU-KDNS3 isolated from an animal waste lagoon.
    Sharma N; Doerner KC; Alok PC; Choudhary M
    Lett Appl Microbiol; 2015 Mar; 60(3):298-306. PubMed ID: 25495851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced hydrogen production by Rhodopseudomonas palustris CQK 01 with ultra-sonication pretreatment in batch culture.
    Zhu X; Xie X; Liao Q; Wang Y; Lee D
    Bioresour Technol; 2011 Sep; 102(18):8696-9. PubMed ID: 21411314
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced squalene biosynthesis in Yarrowia lipolytica based on metabolically engineered acetyl-CoA metabolism.
    Huang YY; Jian XX; Lv YB; Nian KQ; Gao Q; Chen J; Wei LJ; Hua Q
    J Biotechnol; 2018 Sep; 281():106-114. PubMed ID: 29986837
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving squalene production by enhancing the NADPH/NADP
    Xu W; Yao J; Liu L; Ma X; Li W; Sun X; Wang Y
    Biotechnol Biofuels; 2019; 12():68. PubMed ID: 30962822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rhodopseudomonas palustris: A biotechnology chassis.
    Brown B; Wilkins M; Saha R
    Biotechnol Adv; 2022 Nov; 60():108001. PubMed ID: 35680002
    [TBL] [Abstract][Full Text] [Related]  

  • 40. System-level analysis of metabolic trade-offs during anaerobic photoheterotrophic growth in Rhodopseudomonas palustris.
    Navid A; Jiao Y; Wong SE; Pett-Ridge J
    BMC Bioinformatics; 2019 May; 20(1):233. PubMed ID: 31072303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.